Normalized defining polynomial
\( x^{12} - 4 x^{11} + 354 x^{10} - 948 x^{9} + 51931 x^{8} - 155880 x^{7} + 1803608 x^{6} + \cdots + 30754259836 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(64696171405251285666634521378816\) \(\medspace = 2^{33}\cdot 3^{6}\cdot 7^{8}\cdot 13^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(447.62\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{11/4}3^{1/2}7^{2/3}13^{11/12}\approx 447.6169754680814$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(13\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{26}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(4368=2^{4}\cdot 3\cdot 7\cdot 13\) | ||
Dirichlet character group: | $\lbrace$$\chi_{4368}(1,·)$, $\chi_{4368}(3011,·)$, $\chi_{4368}(289,·)$, $\chi_{4368}(529,·)$, $\chi_{4368}(947,·)$, $\chi_{4368}(2867,·)$, $\chi_{4368}(3481,·)$, $\chi_{4368}(2521,·)$, $\chi_{4368}(3035,·)$, $\chi_{4368}(2459,·)$, $\chi_{4368}(3515,·)$, $\chi_{4368}(1369,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.40495104.3$^{2}$, 12.0.64696171405251285666634521378816.2$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13}a^{4}+\frac{3}{13}a^{3}+\frac{5}{13}a^{2}-\frac{4}{13}a-\frac{4}{13}$, $\frac{1}{13}a^{5}-\frac{4}{13}a^{3}-\frac{6}{13}a^{2}-\frac{5}{13}a-\frac{1}{13}$, $\frac{1}{195}a^{6}-\frac{2}{195}a^{5}-\frac{1}{39}a^{4}-\frac{79}{195}a^{3}-\frac{10}{39}a^{2}-\frac{59}{195}$, $\frac{1}{195}a^{7}+\frac{2}{65}a^{5}+\frac{1}{195}a^{4}+\frac{2}{195}a^{3}+\frac{1}{3}a^{2}+\frac{7}{15}a+\frac{92}{195}$, $\frac{1}{5860920}a^{8}+\frac{229}{1465230}a^{7}+\frac{729}{976820}a^{6}-\frac{13781}{1465230}a^{5}+\frac{33451}{1953640}a^{4}+\frac{60100}{146523}a^{3}+\frac{93664}{244205}a^{2}+\frac{115697}{244205}a-\frac{7277}{34476}$, $\frac{1}{5860920}a^{9}+\frac{3443}{2930460}a^{7}-\frac{61}{86190}a^{6}+\frac{38005}{1172184}a^{5}+\frac{135}{5746}a^{4}+\frac{100713}{244205}a^{3}+\frac{17302}{43095}a^{2}-\frac{114077}{586092}a+\frac{13946}{43095}$, $\frac{1}{679667448720}a^{10}+\frac{10223}{169916862180}a^{9}-\frac{28261}{339833724360}a^{8}+\frac{217778267}{169916862180}a^{7}+\frac{234172153}{679667448720}a^{6}+\frac{582056482}{42479215545}a^{5}-\frac{17991866}{8495843109}a^{4}+\frac{20020422217}{84958431090}a^{3}-\frac{138902301277}{339833724360}a^{2}+\frac{3660053278}{14159738515}a-\frac{44944273}{108642495}$, $\frac{1}{54\!\cdots\!40}a^{11}+\frac{62962667}{90\!\cdots\!40}a^{10}+\frac{407645863445}{27\!\cdots\!32}a^{9}+\frac{850345423713}{18\!\cdots\!88}a^{8}-\frac{24\!\cdots\!27}{10\!\cdots\!28}a^{7}-\frac{39\!\cdots\!67}{27\!\cdots\!20}a^{6}+\frac{11\!\cdots\!17}{69\!\cdots\!80}a^{5}+\frac{15\!\cdots\!95}{54\!\cdots\!64}a^{4}-\frac{13\!\cdots\!41}{27\!\cdots\!20}a^{3}-\frac{94\!\cdots\!45}{90\!\cdots\!44}a^{2}-\frac{11\!\cdots\!41}{26\!\cdots\!60}a-\frac{579056113237333}{40\!\cdots\!56}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{342060}$, which has order $2736480$ (assuming GRH)
Relative class number: $456080$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{56}{12276493292505}a^{11}+\frac{465}{3273731544668}a^{10}+\frac{23039}{24552986585010}a^{9}+\frac{864473}{24552986585010}a^{8}+\frac{1295584}{12276493292505}a^{7}+\frac{5253889}{2135042311740}a^{6}-\frac{120644949}{8184328861670}a^{5}-\frac{2467526531}{12276493292505}a^{4}+\frac{11366684582}{12276493292505}a^{3}+\frac{15502292935}{4910597317002}a^{2}-\frac{1140939133}{55549743405}a+\frac{6235452201}{615640805}$, $\frac{3566751046493}{27\!\cdots\!20}a^{11}+\frac{63730016963}{90\!\cdots\!40}a^{10}+\frac{629452060251377}{13\!\cdots\!60}a^{9}+\frac{212616525387442}{33\!\cdots\!15}a^{8}+\frac{14\!\cdots\!33}{20\!\cdots\!40}a^{7}+\frac{51\!\cdots\!91}{69\!\cdots\!80}a^{6}+\frac{17\!\cdots\!70}{67\!\cdots\!83}a^{5}+\frac{18\!\cdots\!31}{10\!\cdots\!20}a^{4}-\frac{35\!\cdots\!37}{13\!\cdots\!60}a^{3}-\frac{52\!\cdots\!17}{13\!\cdots\!60}a^{2}+\frac{10\!\cdots\!16}{19\!\cdots\!95}a-\frac{31\!\cdots\!77}{33\!\cdots\!30}$, $\frac{29615999215}{54\!\cdots\!64}a^{11}-\frac{461026056989}{90\!\cdots\!40}a^{10}+\frac{7568719302848}{33\!\cdots\!15}a^{9}-\frac{14097092404397}{90\!\cdots\!44}a^{8}+\frac{656120478973109}{18\!\cdots\!88}a^{7}-\frac{66\!\cdots\!19}{27\!\cdots\!20}a^{6}+\frac{54\!\cdots\!77}{27\!\cdots\!32}a^{5}-\frac{72\!\cdots\!60}{22\!\cdots\!61}a^{4}-\frac{44\!\cdots\!87}{27\!\cdots\!32}a^{3}+\frac{11\!\cdots\!65}{90\!\cdots\!44}a^{2}-\frac{14\!\cdots\!41}{39\!\cdots\!90}a+\frac{13\!\cdots\!83}{339573062043163}$, $\frac{4548212423}{13\!\cdots\!76}a^{11}+\frac{11071937221}{18\!\cdots\!88}a^{10}+\frac{10437306400177}{90\!\cdots\!44}a^{9}+\frac{7708715258683}{45\!\cdots\!22}a^{8}+\frac{31\!\cdots\!11}{18\!\cdots\!88}a^{7}+\frac{36\!\cdots\!05}{18\!\cdots\!88}a^{6}+\frac{28\!\cdots\!11}{45\!\cdots\!22}a^{5}+\frac{39\!\cdots\!53}{90\!\cdots\!44}a^{4}-\frac{58\!\cdots\!63}{90\!\cdots\!44}a^{3}-\frac{93\!\cdots\!21}{90\!\cdots\!44}a^{2}+\frac{17\!\cdots\!21}{13\!\cdots\!33}a-\frac{15\!\cdots\!01}{679146124086326}$, $\frac{44865616533}{18\!\cdots\!88}a^{11}+\frac{29145941451}{18\!\cdots\!88}a^{10}+\frac{7874756035487}{90\!\cdots\!44}a^{9}+\frac{7728327322617}{45\!\cdots\!22}a^{8}+\frac{23\!\cdots\!93}{18\!\cdots\!88}a^{7}+\frac{38\!\cdots\!75}{18\!\cdots\!88}a^{6}+\frac{20\!\cdots\!01}{45\!\cdots\!22}a^{5}+\frac{24\!\cdots\!75}{69\!\cdots\!88}a^{4}-\frac{43\!\cdots\!77}{90\!\cdots\!44}a^{3}-\frac{99\!\cdots\!07}{90\!\cdots\!44}a^{2}+\frac{14\!\cdots\!19}{13\!\cdots\!33}a+\frac{74461075246161}{52242009545102}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 280406.634104081 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 280406.634104081 \cdot 2736480}{2\cdot\sqrt{64696171405251285666634521378816}}\cr\approx \mathstrut & 2.93488093339464 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{26}) \), 3.3.8281.1, 4.0.40495104.3, 6.6.456434940416.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/17.1.0.1}{1} }^{12}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.1.0.1}{1} }^{12}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.11.9 | $x^{4} + 8 x^{3} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
2.4.11.9 | $x^{4} + 8 x^{3} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
2.4.11.9 | $x^{4} + 8 x^{3} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(7\) | 7.12.8.2 | $x^{12} - 70 x^{9} + 1519 x^{6} - 4802 x^{3} + 21609$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(13\) | 13.12.11.11 | $x^{12} + 65$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |