Normalized defining polynomial
\( x^{12} - 4 x^{11} - 257 x^{10} + 874 x^{9} + 25914 x^{8} - 71452 x^{7} - 1309383 x^{6} + \cdots + 2215713361 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1113186255270152000000000\) \(\medspace = 2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(100.90\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{3/4}7^{2/3}17^{1/2}\approx 100.89755746835681$ | ||
Ramified primes: | \(2\), \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(2380=2^{2}\cdot 5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{2380}(1,·)$, $\chi_{2380}(67,·)$, $\chi_{2380}(1089,·)$, $\chi_{2380}(681,·)$, $\chi_{2380}(883,·)$, $\chi_{2380}(1429,·)$, $\chi_{2380}(407,·)$, $\chi_{2380}(543,·)$, $\chi_{2380}(2041,·)$, $\chi_{2380}(1563,·)$, $\chi_{2380}(2109,·)$, $\chi_{2380}(1087,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17}a^{6}-\frac{2}{17}a^{5}-\frac{3}{17}a^{4}+\frac{6}{17}a^{3}+\frac{2}{17}a^{2}-\frac{4}{17}a+\frac{1}{17}$, $\frac{1}{17}a^{7}-\frac{7}{17}a^{5}-\frac{3}{17}a^{3}-\frac{7}{17}a+\frac{2}{17}$, $\frac{1}{17}a^{8}+\frac{3}{17}a^{5}-\frac{7}{17}a^{4}+\frac{8}{17}a^{3}+\frac{7}{17}a^{2}+\frac{8}{17}a+\frac{7}{17}$, $\frac{1}{17}a^{9}-\frac{1}{17}a^{5}+\frac{6}{17}a^{3}+\frac{2}{17}a^{2}+\frac{2}{17}a-\frac{3}{17}$, $\frac{1}{912020063}a^{10}+\frac{8315308}{912020063}a^{9}+\frac{21073590}{912020063}a^{8}-\frac{24871043}{912020063}a^{7}+\frac{6391077}{912020063}a^{6}-\frac{380586680}{912020063}a^{5}-\frac{410483573}{912020063}a^{4}+\frac{222616503}{912020063}a^{3}+\frac{83602970}{912020063}a^{2}-\frac{39359955}{912020063}a-\frac{4367432}{53648239}$, $\frac{1}{91\!\cdots\!83}a^{11}-\frac{121082189585}{31\!\cdots\!27}a^{10}+\frac{14\!\cdots\!16}{91\!\cdots\!83}a^{9}-\frac{17\!\cdots\!29}{91\!\cdots\!83}a^{8}+\frac{22\!\cdots\!88}{91\!\cdots\!83}a^{7}+\frac{78\!\cdots\!68}{91\!\cdots\!83}a^{6}-\frac{86\!\cdots\!65}{91\!\cdots\!83}a^{5}-\frac{28\!\cdots\!35}{91\!\cdots\!83}a^{4}-\frac{29\!\cdots\!23}{91\!\cdots\!83}a^{3}+\frac{33\!\cdots\!17}{91\!\cdots\!83}a^{2}+\frac{33\!\cdots\!85}{91\!\cdots\!83}a-\frac{14\!\cdots\!05}{31\!\cdots\!27}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{28}{912020063}a^{11}+\frac{6220}{912020063}a^{10}-\frac{27920}{912020063}a^{9}-\frac{1364815}{912020063}a^{8}+\frac{4376300}{912020063}a^{7}+\frac{109388482}{912020063}a^{6}-\frac{252423766}{912020063}a^{5}-\frac{3951246695}{912020063}a^{4}+\frac{5890920830}{912020063}a^{3}+\frac{63182516921}{912020063}a^{2}-\frac{44747914208}{912020063}a-\frac{20537102366}{53648239}$, $\frac{354706423164300}{53\!\cdots\!99}a^{11}-\frac{40248957255294}{18\!\cdots\!31}a^{10}-\frac{77\!\cdots\!60}{53\!\cdots\!99}a^{9}+\frac{20\!\cdots\!55}{53\!\cdots\!99}a^{8}+\frac{62\!\cdots\!80}{53\!\cdots\!99}a^{7}-\frac{11\!\cdots\!80}{53\!\cdots\!99}a^{6}-\frac{22\!\cdots\!90}{53\!\cdots\!99}a^{5}+\frac{23\!\cdots\!20}{53\!\cdots\!99}a^{4}+\frac{36\!\cdots\!90}{53\!\cdots\!99}a^{3}-\frac{88\!\cdots\!45}{53\!\cdots\!99}a^{2}-\frac{20\!\cdots\!80}{53\!\cdots\!99}a-\frac{36\!\cdots\!17}{18\!\cdots\!31}$, $\frac{433041744480640}{53\!\cdots\!99}a^{11}-\frac{56116321717860}{18\!\cdots\!31}a^{10}-\frac{94\!\cdots\!80}{53\!\cdots\!99}a^{9}+\frac{29\!\cdots\!55}{53\!\cdots\!99}a^{8}+\frac{74\!\cdots\!00}{53\!\cdots\!99}a^{7}-\frac{19\!\cdots\!50}{53\!\cdots\!99}a^{6}-\frac{26\!\cdots\!24}{53\!\cdots\!99}a^{5}+\frac{51\!\cdots\!75}{53\!\cdots\!99}a^{4}+\frac{42\!\cdots\!00}{53\!\cdots\!99}a^{3}-\frac{53\!\cdots\!00}{53\!\cdots\!99}a^{2}-\frac{22\!\cdots\!40}{53\!\cdots\!99}a+\frac{50\!\cdots\!10}{18\!\cdots\!31}$, $\frac{76\!\cdots\!28}{91\!\cdots\!83}a^{11}+\frac{11\!\cdots\!60}{31\!\cdots\!27}a^{10}-\frac{18\!\cdots\!80}{91\!\cdots\!83}a^{9}-\frac{85\!\cdots\!80}{91\!\cdots\!83}a^{8}+\frac{17\!\cdots\!00}{91\!\cdots\!83}a^{7}+\frac{76\!\cdots\!12}{91\!\cdots\!83}a^{6}-\frac{70\!\cdots\!14}{91\!\cdots\!83}a^{5}-\frac{30\!\cdots\!20}{91\!\cdots\!83}a^{4}+\frac{13\!\cdots\!30}{91\!\cdots\!83}a^{3}+\frac{54\!\cdots\!61}{91\!\cdots\!83}a^{2}-\frac{83\!\cdots\!08}{91\!\cdots\!83}a-\frac{65\!\cdots\!73}{18\!\cdots\!31}$, $\frac{57\!\cdots\!52}{91\!\cdots\!83}a^{11}-\frac{28\!\cdots\!78}{31\!\cdots\!27}a^{10}-\frac{10\!\cdots\!00}{91\!\cdots\!83}a^{9}+\frac{17\!\cdots\!50}{91\!\cdots\!83}a^{8}+\frac{62\!\cdots\!60}{91\!\cdots\!83}a^{7}-\frac{12\!\cdots\!22}{91\!\cdots\!83}a^{6}-\frac{13\!\cdots\!24}{91\!\cdots\!83}a^{5}+\frac{43\!\cdots\!35}{91\!\cdots\!83}a^{4}+\frac{37\!\cdots\!00}{91\!\cdots\!83}a^{3}-\frac{64\!\cdots\!26}{91\!\cdots\!83}a^{2}+\frac{91\!\cdots\!68}{91\!\cdots\!83}a+\frac{67\!\cdots\!97}{18\!\cdots\!31}$, $\frac{16\!\cdots\!88}{91\!\cdots\!83}a^{11}-\frac{57\!\cdots\!34}{31\!\cdots\!27}a^{10}-\frac{32\!\cdots\!99}{91\!\cdots\!83}a^{9}+\frac{47\!\cdots\!76}{12\!\cdots\!73}a^{8}+\frac{22\!\cdots\!16}{91\!\cdots\!83}a^{7}-\frac{25\!\cdots\!25}{91\!\cdots\!83}a^{6}-\frac{63\!\cdots\!81}{91\!\cdots\!83}a^{5}+\frac{83\!\cdots\!80}{91\!\cdots\!83}a^{4}+\frac{68\!\cdots\!07}{91\!\cdots\!83}a^{3}-\frac{12\!\cdots\!38}{91\!\cdots\!83}a^{2}-\frac{15\!\cdots\!81}{91\!\cdots\!83}a+\frac{20\!\cdots\!16}{31\!\cdots\!27}$, $\frac{20\!\cdots\!72}{53\!\cdots\!99}a^{11}-\frac{24\!\cdots\!42}{18\!\cdots\!31}a^{10}-\frac{23\!\cdots\!00}{53\!\cdots\!99}a^{9}+\frac{15\!\cdots\!45}{53\!\cdots\!99}a^{8}-\frac{24\!\cdots\!60}{53\!\cdots\!99}a^{7}-\frac{11\!\cdots\!52}{53\!\cdots\!99}a^{6}+\frac{10\!\cdots\!64}{53\!\cdots\!99}a^{5}+\frac{41\!\cdots\!80}{53\!\cdots\!99}a^{4}-\frac{35\!\cdots\!60}{53\!\cdots\!99}a^{3}-\frac{64\!\cdots\!96}{53\!\cdots\!99}a^{2}+\frac{31\!\cdots\!71}{53\!\cdots\!99}a+\frac{12\!\cdots\!86}{18\!\cdots\!31}$, $\frac{10\!\cdots\!19}{91\!\cdots\!83}a^{11}-\frac{15\!\cdots\!40}{31\!\cdots\!27}a^{10}-\frac{22\!\cdots\!34}{91\!\cdots\!83}a^{9}+\frac{80\!\cdots\!21}{91\!\cdots\!83}a^{8}+\frac{19\!\cdots\!90}{91\!\cdots\!83}a^{7}-\frac{50\!\cdots\!72}{91\!\cdots\!83}a^{6}-\frac{45\!\cdots\!39}{53\!\cdots\!99}a^{5}+\frac{18\!\cdots\!55}{12\!\cdots\!73}a^{4}+\frac{14\!\cdots\!69}{91\!\cdots\!83}a^{3}-\frac{19\!\cdots\!86}{12\!\cdots\!73}a^{2}-\frac{96\!\cdots\!80}{91\!\cdots\!83}a+\frac{19\!\cdots\!22}{31\!\cdots\!27}$, $\frac{88\!\cdots\!11}{91\!\cdots\!83}a^{11}+\frac{37\!\cdots\!60}{31\!\cdots\!27}a^{10}-\frac{25\!\cdots\!58}{91\!\cdots\!83}a^{9}-\frac{28\!\cdots\!43}{91\!\cdots\!83}a^{8}+\frac{27\!\cdots\!73}{91\!\cdots\!83}a^{7}+\frac{27\!\cdots\!75}{91\!\cdots\!83}a^{6}-\frac{14\!\cdots\!75}{91\!\cdots\!83}a^{5}-\frac{12\!\cdots\!40}{91\!\cdots\!83}a^{4}+\frac{33\!\cdots\!23}{91\!\cdots\!83}a^{3}+\frac{28\!\cdots\!77}{91\!\cdots\!83}a^{2}-\frac{31\!\cdots\!80}{91\!\cdots\!83}a-\frac{82\!\cdots\!27}{31\!\cdots\!27}$, $\frac{17\!\cdots\!12}{91\!\cdots\!83}a^{11}-\frac{61\!\cdots\!13}{31\!\cdots\!27}a^{10}-\frac{35\!\cdots\!45}{91\!\cdots\!83}a^{9}+\frac{36\!\cdots\!72}{91\!\cdots\!83}a^{8}+\frac{23\!\cdots\!64}{91\!\cdots\!83}a^{7}-\frac{27\!\cdots\!40}{91\!\cdots\!83}a^{6}-\frac{24\!\cdots\!02}{32\!\cdots\!43}a^{5}+\frac{89\!\cdots\!28}{91\!\cdots\!83}a^{4}+\frac{73\!\cdots\!32}{91\!\cdots\!83}a^{3}-\frac{12\!\cdots\!16}{91\!\cdots\!83}a^{2}-\frac{18\!\cdots\!59}{91\!\cdots\!83}a+\frac{22\!\cdots\!71}{31\!\cdots\!27}$, $\frac{46\!\cdots\!74}{91\!\cdots\!83}a^{11}-\frac{16\!\cdots\!07}{31\!\cdots\!27}a^{10}-\frac{90\!\cdots\!25}{91\!\cdots\!83}a^{9}+\frac{54\!\cdots\!20}{53\!\cdots\!99}a^{8}+\frac{62\!\cdots\!96}{91\!\cdots\!83}a^{7}-\frac{65\!\cdots\!02}{91\!\cdots\!83}a^{6}-\frac{19\!\cdots\!79}{91\!\cdots\!83}a^{5}+\frac{21\!\cdots\!51}{91\!\cdots\!83}a^{4}+\frac{25\!\cdots\!23}{91\!\cdots\!83}a^{3}-\frac{32\!\cdots\!40}{91\!\cdots\!83}a^{2}-\frac{97\!\cdots\!14}{91\!\cdots\!83}a+\frac{56\!\cdots\!93}{31\!\cdots\!27}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 54495459.0657 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 54495459.0657 \cdot 2}{2\cdot\sqrt{1113186255270152000000000}}\cr\approx \mathstrut & 0.211561357811 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.4.578000.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.1.0.1}{1} }^{12}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(5\) | 5.12.9.1 | $x^{12} - 30 x^{8} + 225 x^{4} + 1125$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |