Normalized defining polynomial
\( x^{12} - 18x^{10} - 8x^{9} + 81x^{8} + 54x^{7} - 120x^{6} - 102x^{5} + 45x^{4} + 54x^{3} + 3x^{2} - 6x - 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(14003989580611584\) \(\medspace = 2^{18}\cdot 3^{16}\cdot 17\cdot 73\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(22.16\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{4/3}17^{1/2}73^{1/2}\approx 431.11442768403583$ | ||
Ramified primes: | \(2\), \(3\), \(17\), \(73\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{1241}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1513}a^{11}+\frac{31}{1513}a^{10}-\frac{570}{1513}a^{9}+\frac{478}{1513}a^{8}-\frac{231}{1513}a^{7}+\frac{458}{1513}a^{6}+\frac{461}{1513}a^{5}+\frac{572}{1513}a^{4}-\frac{379}{1513}a^{3}+\frac{409}{1513}a^{2}+\frac{34}{89}a-\frac{244}{1513}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{83100}{1513}a^{11}-\frac{47442}{1513}a^{10}-\frac{1468632}{1513}a^{9}+\frac{173493}{1513}a^{8}+\frac{6630810}{1513}a^{7}+\frac{703830}{1513}a^{6}-\frac{10370162}{1513}a^{5}-\frac{2563743}{1513}a^{4}+\frac{5201402}{1513}a^{3}+\frac{1529511}{1513}a^{2}-\frac{36662}{89}a-\frac{147448}{1513}$, $\frac{127494}{1513}a^{11}-\frac{72266}{1513}a^{10}-\frac{2253534}{1513}a^{9}+\frac{257215}{1513}a^{8}+\frac{10174356}{1513}a^{7}+\frac{1117637}{1513}a^{6}-\frac{15903920}{1513}a^{5}-\frac{3983761}{1513}a^{4}+\frac{7957322}{1513}a^{3}+\frac{2362807}{1513}a^{2}-\frac{55574}{89}a-\frac{226693}{1513}$, $a^{11}+18a^{9}+8a^{8}-81a^{7}-54a^{6}+120a^{5}+102a^{4}-45a^{3}-54a^{2}-3a+6$, $a^{11}+18a^{9}+8a^{8}-81a^{7}-54a^{6}+120a^{5}+102a^{4}-45a^{3}-54a^{2}-3a+5$, $\frac{102944}{1513}a^{11}+\frac{57147}{1513}a^{10}+\frac{1821053}{1513}a^{9}-\frac{187545}{1513}a^{8}-\frac{8230477}{1513}a^{7}-\frac{985209}{1513}a^{6}+\frac{12884282}{1513}a^{5}+\frac{3324540}{1513}a^{4}-\frac{6461978}{1513}a^{3}-\frac{1939998}{1513}a^{2}+\frac{45397}{89}a+\frac{182583}{1513}$, $\frac{42881}{1513}a^{11}+\frac{24824}{1513}a^{10}+\frac{757668}{1513}a^{9}-\frac{95826}{1513}a^{8}-\frac{3420993}{1513}a^{7}-\frac{332105}{1513}a^{6}+\frac{5352198}{1513}a^{5}+\frac{1265692}{1513}a^{4}-\frac{2687835}{1513}a^{3}-\frac{751594}{1513}a^{2}+\frac{19090}{89}a+\frac{71680}{1513}$, $\frac{42881}{1513}a^{11}+\frac{24824}{1513}a^{10}+\frac{757668}{1513}a^{9}-\frac{95826}{1513}a^{8}-\frac{3420993}{1513}a^{7}-\frac{332105}{1513}a^{6}+\frac{5352198}{1513}a^{5}+\frac{1265692}{1513}a^{4}-\frac{2687835}{1513}a^{3}-\frac{751594}{1513}a^{2}+\frac{19090}{89}a+\frac{70167}{1513}$, $\frac{144422}{1513}a^{11}-\frac{81587}{1513}a^{10}-\frac{2553667}{1513}a^{9}+\frac{287535}{1513}a^{8}+\frac{11538306}{1513}a^{7}+\frac{1276914}{1513}a^{6}-\frac{18061704}{1513}a^{5}-\frac{4515208}{1513}a^{4}+\frac{9062733}{1513}a^{3}+\frac{2665471}{1513}a^{2}-\frac{63684}{89}a-\frac{252356}{1513}$, $\frac{5973}{89}a^{11}+\frac{3339}{89}a^{10}+\frac{105647}{89}a^{9}-\frac{11277}{89}a^{8}-\frac{477489}{89}a^{7}-\frac{55577}{89}a^{6}+\frac{747618}{89}a^{5}+\frac{191148}{89}a^{4}-\frac{374994}{89}a^{3}-\frac{112581}{89}a^{2}+\frac{44505}{89}a+\frac{10628}{89}$, $\frac{18047}{1513}a^{11}+\frac{9431}{1513}a^{10}+\frac{319146}{1513}a^{9}-\frac{22035}{1513}a^{8}-\frac{1436808}{1513}a^{7}-\frac{223931}{1513}a^{6}+\frac{2224430}{1513}a^{5}+\frac{666035}{1513}a^{4}-\frac{1080742}{1513}a^{3}-\frac{382085}{1513}a^{2}+\frac{7177}{89}a+\frac{38463}{1513}$, $\frac{144520}{1513}a^{11}+\frac{83088}{1513}a^{10}+\frac{2553546}{1513}a^{9}-\frac{311684}{1513}a^{8}-\frac{11526259}{1513}a^{7}-\frac{1181089}{1513}a^{6}+\frac{18018039}{1513}a^{5}+\frac{4394093}{1513}a^{4}-\frac{9021052}{1513}a^{3}-\frac{2625364}{1513}a^{2}+\frac{62844}{89}a+\frac{252060}{1513}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 10781.91758130257 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 10781.91758130257 \cdot 1}{2\cdot\sqrt{14003989580611584}}\cr\approx \mathstrut & 0.186595029345050 \end{aligned}\]
Galois group
$C_2\wr C_6$ (as 12T134):
A solvable group of order 384 |
The 28 conjugacy class representatives for $C_2\wr C_6$ |
Character table for $C_2\wr C_6$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), 6.6.3359232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.18.23 | $x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
\(3\) | 3.12.16.14 | $x^{12} + 24 x^{11} + 216 x^{10} + 768 x^{9} - 432 x^{8} - 10368 x^{7} - 18414 x^{6} + 27864 x^{5} + 83592 x^{4} + 10800 x^{3} + 64800 x^{2} + 901125$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
\(17\) | $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
17.2.1.1 | $x^{2} + 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.0.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
\(73\) | $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
73.2.0.1 | $x^{2} + 70 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
73.2.0.1 | $x^{2} + 70 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |