Properties

Label 12.12.14003989580611584.1
Degree $12$
Signature $[12, 0]$
Discriminant $1.400\times 10^{16}$
Root discriminant \(22.16\)
Ramified primes $2,3,17,73$
Class number $1$
Class group trivial
Galois group $C_2\wr C_6$ (as 12T134)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1)
 
gp: K = bnfinit(y^12 - 18*y^10 - 8*y^9 + 81*y^8 + 54*y^7 - 120*y^6 - 102*y^5 + 45*y^4 + 54*y^3 + 3*y^2 - 6*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1)
 

\( x^{12} - 18x^{10} - 8x^{9} + 81x^{8} + 54x^{7} - 120x^{6} - 102x^{5} + 45x^{4} + 54x^{3} + 3x^{2} - 6x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14003989580611584\) \(\medspace = 2^{18}\cdot 3^{16}\cdot 17\cdot 73\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.16\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{4/3}17^{1/2}73^{1/2}\approx 431.11442768403583$
Ramified primes:   \(2\), \(3\), \(17\), \(73\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1241}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1513}a^{11}+\frac{31}{1513}a^{10}-\frac{570}{1513}a^{9}+\frac{478}{1513}a^{8}-\frac{231}{1513}a^{7}+\frac{458}{1513}a^{6}+\frac{461}{1513}a^{5}+\frac{572}{1513}a^{4}-\frac{379}{1513}a^{3}+\frac{409}{1513}a^{2}+\frac{34}{89}a-\frac{244}{1513}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{83100}{1513}a^{11}-\frac{47442}{1513}a^{10}-\frac{1468632}{1513}a^{9}+\frac{173493}{1513}a^{8}+\frac{6630810}{1513}a^{7}+\frac{703830}{1513}a^{6}-\frac{10370162}{1513}a^{5}-\frac{2563743}{1513}a^{4}+\frac{5201402}{1513}a^{3}+\frac{1529511}{1513}a^{2}-\frac{36662}{89}a-\frac{147448}{1513}$, $\frac{127494}{1513}a^{11}-\frac{72266}{1513}a^{10}-\frac{2253534}{1513}a^{9}+\frac{257215}{1513}a^{8}+\frac{10174356}{1513}a^{7}+\frac{1117637}{1513}a^{6}-\frac{15903920}{1513}a^{5}-\frac{3983761}{1513}a^{4}+\frac{7957322}{1513}a^{3}+\frac{2362807}{1513}a^{2}-\frac{55574}{89}a-\frac{226693}{1513}$, $a^{11}+18a^{9}+8a^{8}-81a^{7}-54a^{6}+120a^{5}+102a^{4}-45a^{3}-54a^{2}-3a+6$, $a^{11}+18a^{9}+8a^{8}-81a^{7}-54a^{6}+120a^{5}+102a^{4}-45a^{3}-54a^{2}-3a+5$, $\frac{102944}{1513}a^{11}+\frac{57147}{1513}a^{10}+\frac{1821053}{1513}a^{9}-\frac{187545}{1513}a^{8}-\frac{8230477}{1513}a^{7}-\frac{985209}{1513}a^{6}+\frac{12884282}{1513}a^{5}+\frac{3324540}{1513}a^{4}-\frac{6461978}{1513}a^{3}-\frac{1939998}{1513}a^{2}+\frac{45397}{89}a+\frac{182583}{1513}$, $\frac{42881}{1513}a^{11}+\frac{24824}{1513}a^{10}+\frac{757668}{1513}a^{9}-\frac{95826}{1513}a^{8}-\frac{3420993}{1513}a^{7}-\frac{332105}{1513}a^{6}+\frac{5352198}{1513}a^{5}+\frac{1265692}{1513}a^{4}-\frac{2687835}{1513}a^{3}-\frac{751594}{1513}a^{2}+\frac{19090}{89}a+\frac{71680}{1513}$, $\frac{42881}{1513}a^{11}+\frac{24824}{1513}a^{10}+\frac{757668}{1513}a^{9}-\frac{95826}{1513}a^{8}-\frac{3420993}{1513}a^{7}-\frac{332105}{1513}a^{6}+\frac{5352198}{1513}a^{5}+\frac{1265692}{1513}a^{4}-\frac{2687835}{1513}a^{3}-\frac{751594}{1513}a^{2}+\frac{19090}{89}a+\frac{70167}{1513}$, $\frac{144422}{1513}a^{11}-\frac{81587}{1513}a^{10}-\frac{2553667}{1513}a^{9}+\frac{287535}{1513}a^{8}+\frac{11538306}{1513}a^{7}+\frac{1276914}{1513}a^{6}-\frac{18061704}{1513}a^{5}-\frac{4515208}{1513}a^{4}+\frac{9062733}{1513}a^{3}+\frac{2665471}{1513}a^{2}-\frac{63684}{89}a-\frac{252356}{1513}$, $\frac{5973}{89}a^{11}+\frac{3339}{89}a^{10}+\frac{105647}{89}a^{9}-\frac{11277}{89}a^{8}-\frac{477489}{89}a^{7}-\frac{55577}{89}a^{6}+\frac{747618}{89}a^{5}+\frac{191148}{89}a^{4}-\frac{374994}{89}a^{3}-\frac{112581}{89}a^{2}+\frac{44505}{89}a+\frac{10628}{89}$, $\frac{18047}{1513}a^{11}+\frac{9431}{1513}a^{10}+\frac{319146}{1513}a^{9}-\frac{22035}{1513}a^{8}-\frac{1436808}{1513}a^{7}-\frac{223931}{1513}a^{6}+\frac{2224430}{1513}a^{5}+\frac{666035}{1513}a^{4}-\frac{1080742}{1513}a^{3}-\frac{382085}{1513}a^{2}+\frac{7177}{89}a+\frac{38463}{1513}$, $\frac{144520}{1513}a^{11}+\frac{83088}{1513}a^{10}+\frac{2553546}{1513}a^{9}-\frac{311684}{1513}a^{8}-\frac{11526259}{1513}a^{7}-\frac{1181089}{1513}a^{6}+\frac{18018039}{1513}a^{5}+\frac{4394093}{1513}a^{4}-\frac{9021052}{1513}a^{3}-\frac{2625364}{1513}a^{2}+\frac{62844}{89}a+\frac{252060}{1513}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 10781.91758130257 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 10781.91758130257 \cdot 1}{2\cdot\sqrt{14003989580611584}}\cr\approx \mathstrut & 0.186595029345050 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 18*x^10 - 8*x^9 + 81*x^8 + 54*x^7 - 120*x^6 - 102*x^5 + 45*x^4 + 54*x^3 + 3*x^2 - 6*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr C_6$ (as 12T134):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 384
The 28 conjugacy class representatives for $C_2\wr C_6$
Character table for $C_2\wr C_6$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), 6.6.3359232.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.12.0.1}{12} }$ R ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.12.0.1}{12} }$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{3}$ ${\href{/padicField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.18.23$x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
\(3\) Copy content Toggle raw display 3.12.16.14$x^{12} + 24 x^{11} + 216 x^{10} + 768 x^{9} - 432 x^{8} - 10368 x^{7} - 18414 x^{6} + 27864 x^{5} + 83592 x^{4} + 10800 x^{3} + 64800 x^{2} + 901125$$3$$4$$16$$C_{12}$$[2]^{4}$
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
\(73\) Copy content Toggle raw display $\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
73.2.1.2$x^{2} + 365$$2$$1$$1$$C_2$$[\ ]_{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$