Properties

Label 12.12.423...152.1
Degree $12$
Signature $[12, 0]$
Discriminant $4.232\times 10^{22}$
Root discriminant \(76.83\)
Ramified primes $2,7,13$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13)
 
gp: K = bnfinit(y^12 - 65*y^10 + 1183*y^8 - 7670*y^6 + 14651*y^4 - 3809*y^2 + 13, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13)
 

\( x^{12} - 65x^{10} + 1183x^{8} - 7670x^{6} + 14651x^{4} - 3809x^{2} + 13 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(42317611137863236145152\) \(\medspace = 2^{12}\cdot 7^{8}\cdot 13^{11}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(76.83\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 7^{2/3}13^{11/12}\approx 76.83222826035271$
Ramified primes:   \(2\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(364=2^{2}\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{364}(1,·)$, $\chi_{364}(99,·)$, $\chi_{364}(165,·)$, $\chi_{364}(289,·)$, $\chi_{364}(205,·)$, $\chi_{364}(239,·)$, $\chi_{364}(337,·)$, $\chi_{364}(275,·)$, $\chi_{364}(277,·)$, $\chi_{364}(219,·)$, $\chi_{364}(123,·)$, $\chi_{364}(319,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4}a^{6}+\frac{1}{4}$, $\frac{1}{4}a^{7}+\frac{1}{4}a$, $\frac{1}{544}a^{8}+\frac{33}{544}a^{6}+\frac{61}{136}a^{4}-\frac{155}{544}a^{2}+\frac{161}{544}$, $\frac{1}{544}a^{9}+\frac{33}{544}a^{7}+\frac{61}{136}a^{5}-\frac{155}{544}a^{3}+\frac{161}{544}a$, $\frac{1}{5355136}a^{10}-\frac{1}{25024}a^{8}+\frac{308701}{5355136}a^{6}+\frac{577689}{5355136}a^{4}+\frac{1306871}{2677568}a^{2}+\frac{1591689}{5355136}$, $\frac{1}{5355136}a^{11}-\frac{1}{25024}a^{9}+\frac{308701}{5355136}a^{7}+\frac{577689}{5355136}a^{5}+\frac{1306871}{2677568}a^{3}+\frac{1591689}{5355136}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{59}{232832}a^{10}-\frac{1}{64}a^{8}+\frac{58027}{232832}a^{6}-\frac{277901}{232832}a^{4}+\frac{39923}{116416}a^{2}+\frac{70223}{232832}$, $\frac{95961}{5355136}a^{11}-\frac{59}{232832}a^{10}-\frac{29123}{25024}a^{9}+\frac{1}{64}a^{8}+\frac{6658761}{315008}a^{7}-\frac{58027}{232832}a^{6}-\frac{42975759}{315008}a^{5}+\frac{277901}{232832}a^{4}+\frac{687535513}{2677568}a^{3}-\frac{39923}{116416}a^{2}-\frac{318962267}{5355136}a-\frac{768719}{232832}$, $\frac{28217}{5355136}a^{11}-\frac{59}{232832}a^{10}-\frac{8575}{25024}a^{9}+\frac{1}{64}a^{8}+\frac{33435281}{5355136}a^{7}-\frac{58027}{232832}a^{6}-\frac{217148351}{5355136}a^{5}+\frac{277901}{232832}a^{4}+\frac{207585973}{2677568}a^{3}-\frac{39923}{116416}a^{2}-\frac{96570019}{5355136}a-\frac{70223}{232832}$, $\frac{2685}{2677568}a^{10}-\frac{411}{6256}a^{8}+\frac{3270515}{2677568}a^{6}-\frac{22429059}{2677568}a^{4}+\frac{6331711}{334696}a^{2}-\frac{13844625}{2677568}$, $\frac{6167}{5355136}a^{10}-\frac{1889}{25024}a^{8}+\frac{438831}{315008}a^{6}-\frac{2840545}{315008}a^{4}+\frac{41501003}{2677568}a^{2}-\frac{1229037}{5355136}$, $\frac{3275}{1338784}a^{10}-\frac{499}{3128}a^{8}+\frac{3910277}{1338784}a^{6}-\frac{25463157}{1338784}a^{4}+\frac{89704}{2461}a^{2}-\frac{13363671}{1338784}$, $\frac{9}{157504}a^{10}-\frac{61}{12512}a^{8}+\frac{354125}{2677568}a^{6}-\frac{3202159}{2677568}a^{4}+\frac{2962979}{1338784}a^{2}-\frac{1646247}{2677568}$, $\frac{10885}{1338784}a^{11}-\frac{433}{2677568}a^{10}-\frac{389}{736}a^{9}+\frac{67}{6256}a^{8}+\frac{805231}{83674}a^{7}-\frac{561887}{2677568}a^{6}-\frac{83689399}{1338784}a^{5}+\frac{4682447}{2677568}a^{4}+\frac{161049513}{1338784}a^{3}-\frac{1999609}{334696}a^{2}-\frac{10699501}{334696}a+\frac{6036085}{2677568}$, $\frac{4013}{5355136}a^{11}-\frac{99}{334696}a^{10}-\frac{1253}{25024}a^{9}+\frac{263}{12512}a^{8}+\frac{5206409}{5355136}a^{7}-\frac{610671}{1338784}a^{6}-\frac{38466395}{5355136}a^{5}+\frac{637383}{167348}a^{4}+\frac{49735459}{2677568}a^{3}-\frac{14147663}{1338784}a^{2}-\frac{2983819}{315008}a+\frac{851521}{1338784}$, $\frac{395}{78752}a^{11}+\frac{9}{157504}a^{10}-\frac{1023}{3128}a^{9}-\frac{61}{12512}a^{8}+\frac{8025165}{1338784}a^{7}+\frac{354125}{2677568}a^{6}-\frac{52689157}{1338784}a^{5}-\frac{3202159}{2677568}a^{4}+\frac{6458367}{83674}a^{3}+\frac{2962979}{1338784}a^{2}-\frac{29901423}{1338784}a-\frac{4323815}{2677568}$, $\frac{109391}{2677568}a^{11}+\frac{313}{78752}a^{10}-\frac{33215}{12512}a^{9}-\frac{809}{3128}a^{8}+\frac{129249267}{2677568}a^{7}+\frac{6313575}{1338784}a^{6}-\frac{835966217}{2677568}a^{5}-\frac{40896247}{1338784}a^{4}+\frac{790869385}{1338784}a^{3}+\frac{2367016}{41837}a^{2}-\frac{376087545}{2677568}a-\frac{11086093}{1338784}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 16103224.1056 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 16103224.1056 \cdot 3}{2\cdot\sqrt{42317611137863236145152}}\cr\approx \mathstrut & 0.480953923849 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 65*x^10 + 1183*x^8 - 7670*x^6 + 14651*x^4 - 3809*x^2 + 13);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.8281.1, 4.4.35152.1, 6.6.891474493.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ ${\href{/padicField/5.12.0.1}{12} }$ R ${\href{/padicField/11.12.0.1}{12} }$ R ${\href{/padicField/17.2.0.1}{2} }^{6}$ ${\href{/padicField/19.12.0.1}{12} }$ ${\href{/padicField/23.1.0.1}{1} }^{12}$ ${\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.4.0.1}{4} }^{3}$ ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
\(7\) Copy content Toggle raw display 7.12.8.2$x^{12} - 70 x^{9} + 1519 x^{6} - 4802 x^{3} + 21609$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(13\) Copy content Toggle raw display 13.12.11.4$x^{12} + 13$$12$$1$$11$$C_{12}$$[\ ]_{12}$