Normalized defining polynomial
\( x^{12} - 273x^{10} + 28665x^{8} - 1444716x^{6} + 35395542x^{4} - 371653191x^{2} + 1114959573 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(629582418765353043873792\) \(\medspace = 2^{12}\cdot 3^{6}\cdot 7^{6}\cdot 13^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(96.22\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{1/2}7^{1/2}13^{11/12}\approx 96.21756959272508$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(13\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1092=2^{2}\cdot 3\cdot 7\cdot 13\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1092}(1,·)$, $\chi_{1092}(839,·)$, $\chi_{1092}(841,·)$, $\chi_{1092}(587,·)$, $\chi_{1092}(589,·)$, $\chi_{1092}(1007,·)$, $\chi_{1092}(337,·)$, $\chi_{1092}(83,·)$, $\chi_{1092}(757,·)$, $\chi_{1092}(673,·)$, $\chi_{1092}(167,·)$, $\chi_{1092}(671,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{21}a^{2}$, $\frac{1}{21}a^{3}$, $\frac{1}{441}a^{4}$, $\frac{1}{441}a^{5}$, $\frac{1}{9261}a^{6}$, $\frac{1}{9261}a^{7}$, $\frac{1}{194481}a^{8}$, $\frac{1}{194481}a^{9}$, $\frac{1}{4084101}a^{10}$, $\frac{1}{4084101}a^{11}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{9261}a^{6}-\frac{2}{147}a^{4}+\frac{3}{7}a^{2}-2$, $\frac{1}{4084101}a^{10}-\frac{11}{194481}a^{8}+\frac{44}{9261}a^{6}-\frac{11}{63}a^{4}+\frac{55}{21}a^{2}-11$, $\frac{1}{194481}a^{8}-\frac{1}{1029}a^{6}+\frac{3}{49}a^{4}-\frac{29}{21}a^{2}+6$, $\frac{1}{194481}a^{8}-\frac{8}{9261}a^{6}+\frac{20}{441}a^{4}-\frac{16}{21}a^{2}+3$, $\frac{1}{4084101}a^{10}-\frac{11}{194481}a^{8}+\frac{44}{9261}a^{6}-\frac{11}{63}a^{4}+\frac{55}{21}a^{2}-10$, $\frac{1}{4084101}a^{11}-\frac{1}{453789}a^{10}-\frac{13}{194481}a^{9}+\frac{11}{21609}a^{8}+\frac{61}{9261}a^{7}-\frac{407}{9261}a^{6}-\frac{124}{441}a^{5}+\frac{751}{441}a^{4}+\frac{97}{21}a^{3}-\frac{562}{21}a^{2}-11a+82$, $\frac{1}{1361367}a^{11}-\frac{32}{194481}a^{9}+\frac{2}{27783}a^{8}+\frac{2}{147}a^{7}-\frac{2}{147}a^{6}-\frac{74}{147}a^{5}+\frac{52}{63}a^{4}+\frac{23}{3}a^{3}-\frac{52}{3}a^{2}-26a+64$, $\frac{1}{4084101}a^{10}-\frac{4}{194481}a^{9}+\frac{1}{21609}a^{8}+\frac{5}{1323}a^{7}-\frac{125}{9261}a^{6}-\frac{100}{441}a^{5}+\frac{386}{441}a^{4}+\frac{100}{21}a^{3}-\frac{391}{21}a^{2}-19a+69$, $\frac{1}{4084101}a^{11}+\frac{8}{4084101}a^{10}-\frac{10}{194481}a^{9}-\frac{80}{194481}a^{8}+\frac{5}{1323}a^{7}+\frac{40}{1323}a^{6}-\frac{17}{147}a^{5}-\frac{409}{441}a^{4}+\frac{4}{3}a^{3}+\frac{75}{7}a^{2}-5a-35$, $\frac{2}{4084101}a^{11}+\frac{11}{4084101}a^{10}-\frac{22}{194481}a^{9}-\frac{110}{194481}a^{8}+\frac{89}{9261}a^{7}+\frac{376}{9261}a^{6}-\frac{55}{147}a^{5}-\frac{496}{441}a^{4}+\frac{145}{21}a^{3}+\frac{62}{7}a^{2}-51a+35$, $\frac{1}{4084101}a^{11}-\frac{11}{4084101}a^{10}-\frac{10}{194481}a^{9}+\frac{43}{64827}a^{8}+\frac{31}{9261}a^{7}-\frac{548}{9261}a^{6}-\frac{20}{441}a^{5}+\frac{1007}{441}a^{4}-\frac{41}{21}a^{3}-\frac{106}{3}a^{2}+35a+178$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 13423777.933 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 13423777.933 \cdot 4}{2\cdot\sqrt{629582418765353043873792}}\cr\approx \mathstrut & 0.13859207812 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{13}) \), 3.3.169.1, 4.4.15502032.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | R | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.12.0.1}{12} }$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(3\) | 3.6.3.2 | $x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
3.6.3.2 | $x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(7\) | 7.12.6.2 | $x^{12} + 49 x^{8} - 1715 x^{6} + 9604 x^{4} - 100842 x^{2} + 352947$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(13\) | 13.12.11.1 | $x^{12} + 156$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |