Properties

Label 12.12.737...128.1
Degree 1212
Signature [12,0][12, 0]
Discriminant 7.377×10237.377\times 10^{23}
Root discriminant 97.5097.50
Ramified primes 2,13,192,13,19
Class number 11 (GRH)
Class group trivial (GRH)
Galois group C12C_{12} (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371)
 
Copy content gp:K = bnfinit(y^12 - 4*y^11 - 57*y^10 + 226*y^9 + 906*y^8 - 3428*y^7 - 5159*y^6 + 18006*y^5 + 10833*y^4 - 34220*y^3 - 4958*y^2 + 20914*y - 3371, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371)
 

x124x1157x10+226x9+906x83428x75159x6+18006x5+3371 x^{12} - 4 x^{11} - 57 x^{10} + 226 x^{9} + 906 x^{8} - 3428 x^{7} - 5159 x^{6} + 18006 x^{5} + \cdots - 3371 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  1212
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [12,0][12, 0]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   737698544105842578608128737698544105842578608128 =212139198\medspace = 2^{12}\cdot 13^{9}\cdot 19^{8} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  97.5097.50
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  2133/4192/397.496698715308432\cdot 13^{3/4}19^{2/3}\approx 97.49669871530843
Ramified primes:   22, 1313, 1919 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(13)\Q(\sqrt{13})
Aut(K/Q)\Aut(K/\Q) == Gal(K/Q)\Gal(K/\Q):   C12C_{12}
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over Q\Q.
Conductor:  988=221319988=2^{2}\cdot 13\cdot 19
Dirichlet character group:    {\lbraceχ988(1,)\chi_{988}(1,·), χ988(805,)\chi_{988}(805,·), χ988(961,)\chi_{988}(961,·), χ988(619,)\chi_{988}(619,·), χ988(77,)\chi_{988}(77,·), χ988(463,)\chi_{988}(463,·), χ988(83,)\chi_{988}(83,·), χ988(885,)\chi_{988}(885,·), χ988(723,)\chi_{988}(723,·), χ988(343,)\chi_{988}(343,·), χ988(729,)\chi_{988}(729,·), χ988(239,)\chi_{988}(239,·)}\rbrace
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, 13a6+13a5+13a4+13a3+13a13\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}, 13a713a3+13a2+13a+13\frac{1}{3}a^{7}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}, 13a813a4+13a3+13a2+13a\frac{1}{3}a^{8}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a, 13a913a5+13a4+13a3+13a2\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}, 1645501a10+73201645501a9+32779215167a8+20743215167a75292215167a6255293645501a557275215167a469142215167a3+307207645501a2180713645501a+225803645501\frac{1}{645501}a^{10}+\frac{73201}{645501}a^{9}+\frac{32779}{215167}a^{8}+\frac{20743}{215167}a^{7}-\frac{5292}{215167}a^{6}-\frac{255293}{645501}a^{5}-\frac{57275}{215167}a^{4}-\frac{69142}{215167}a^{3}+\frac{307207}{645501}a^{2}-\frac{180713}{645501}a+\frac{225803}{645501}, 114337442826841a11765681514337442826841a10+4414043697234779147608947a9140182142156914337442826841a8965165883004779147608947a7165727528532014337442826841a6+167450234994779147608947a5+310717289354914337442826841a4366225790379514337442826841a3+506256227235514337442826841a2+18147028739094779147608947a+15040495121144779147608947\frac{1}{14337442826841}a^{11}-\frac{7656815}{14337442826841}a^{10}+\frac{441404369723}{4779147608947}a^{9}-\frac{1401821421569}{14337442826841}a^{8}-\frac{96516588300}{4779147608947}a^{7}-\frac{1657275285320}{14337442826841}a^{6}+\frac{16745023499}{4779147608947}a^{5}+\frac{3107172893549}{14337442826841}a^{4}-\frac{3662257903795}{14337442826841}a^{3}+\frac{5062562272355}{14337442826841}a^{2}+\frac{1814702873909}{4779147608947}a+\frac{1504049512114}{4779147608947} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11 (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  C2C_{2}, which has order 22 (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  1111
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   20903647324779147608947a1130640945504779147608947a101393893707924779147608947a9+1745030316184779147608947a8+30050234145364779147608947a725765925906704779147608947a6263528520126304779147608947a5+130249303375174779147608947a4+895348300492104779147608947a3230466224147194779147608947a2829370686755364779147608947a+159613098829594779147608947\frac{2090364732}{4779147608947}a^{11}-\frac{3064094550}{4779147608947}a^{10}-\frac{139389370792}{4779147608947}a^{9}+\frac{174503031618}{4779147608947}a^{8}+\frac{3005023414536}{4779147608947}a^{7}-\frac{2576592590670}{4779147608947}a^{6}-\frac{26352852012630}{4779147608947}a^{5}+\frac{13024930337517}{4779147608947}a^{4}+\frac{89534830049210}{4779147608947}a^{3}-\frac{23046622414719}{4779147608947}a^{2}-\frac{82937068675536}{4779147608947}a+\frac{15961309882959}{4779147608947}, 12217046564779147608947a1138566745004779147608947a10756544654844779147608947a9+2245176012134779147608947a8+14369775148324779147608947a736216066145544779147608947a6109736643967884779147608947a5+209137541518534779147608947a4+336225275376404779147608947a3408205041426764779147608947a2296732447075284779147608947a+230884347541514779147608947\frac{1221704656}{4779147608947}a^{11}-\frac{3856674500}{4779147608947}a^{10}-\frac{75654465484}{4779147608947}a^{9}+\frac{224517601213}{4779147608947}a^{8}+\frac{1436977514832}{4779147608947}a^{7}-\frac{3621606614554}{4779147608947}a^{6}-\frac{10973664396788}{4779147608947}a^{5}+\frac{20913754151853}{4779147608947}a^{4}+\frac{33622527537640}{4779147608947}a^{3}-\frac{40820504142676}{4779147608947}a^{2}-\frac{29673244707528}{4779147608947}a+\frac{23088434754151}{4779147608947}, 532645501a111996645501a1030232645501a9+110161645501a8+159308215167a71564918645501a62710418645501a5+6964621645501a4+5879602645501a38587763645501a23404932645501a+1028494645501\frac{532}{645501}a^{11}-\frac{1996}{645501}a^{10}-\frac{30232}{645501}a^{9}+\frac{110161}{645501}a^{8}+\frac{159308}{215167}a^{7}-\frac{1564918}{645501}a^{6}-\frac{2710418}{645501}a^{5}+\frac{6964621}{645501}a^{4}+\frac{5879602}{645501}a^{3}-\frac{8587763}{645501}a^{2}-\frac{3404932}{645501}a+\frac{1028494}{645501}, 20286556004779147608947a113111747446614337442826841a1031180904104914337442826841a9+5698089395204779147608947a8+12081811232804779147608947a780407501996354779147608947a620667252970974779147608947a5+10311650034724014337442826841a42641498682678314337442826841a39567950905420614337442826841a2+3099962538154914337442826841a456511285975614337442826841\frac{2028655600}{4779147608947}a^{11}-\frac{31117474466}{14337442826841}a^{10}-\frac{311809041049}{14337442826841}a^{9}+\frac{569808939520}{4779147608947}a^{8}+\frac{1208181123280}{4779147608947}a^{7}-\frac{8040750199635}{4779147608947}a^{6}-\frac{2066725297097}{4779147608947}a^{5}+\frac{103116500347240}{14337442826841}a^{4}-\frac{26414986826783}{14337442826841}a^{3}-\frac{95679509054206}{14337442826841}a^{2}+\frac{30999625381549}{14337442826841}a-\frac{4565112859756}{14337442826841}, 1808752760814337442826841a115352612028614337442826841a10108966137348814337442826841a9+297033263075514337442826841a8+65434677265644779147608947a74248870510704814337442826841a613926057448842814337442826841a5+19376836297931214337442826841a4+39919833511391214337442826841a325988559966434014337442826841a233877675458726114337442826841a+8506560342617214337442826841\frac{18087527608}{14337442826841}a^{11}-\frac{53526120286}{14337442826841}a^{10}-\frac{1089661373488}{14337442826841}a^{9}+\frac{2970332630755}{14337442826841}a^{8}+\frac{6543467726564}{4779147608947}a^{7}-\frac{42488705107048}{14337442826841}a^{6}-\frac{139260574488428}{14337442826841}a^{5}+\frac{193768362979312}{14337442826841}a^{4}+\frac{399198335113912}{14337442826841}a^{3}-\frac{259885599664340}{14337442826841}a^{2}-\frac{338776754587261}{14337442826841}a+\frac{85065603426172}{14337442826841}, 921045318414337442826841a114671157648614337442826841a1048028854518814337442826841a9+259686724468614337442826841a8+19703984123244779147608947a73789396940669014337442826841a61406445560301214337442826841a5+17836004340976914337442826841a43714306256842814337442826841a324406737760405414337442826841a2+8416336617021214337442826841a+5856304839087114337442826841\frac{9210453184}{14337442826841}a^{11}-\frac{46711576486}{14337442826841}a^{10}-\frac{480288545188}{14337442826841}a^{9}+\frac{2596867244686}{14337442826841}a^{8}+\frac{1970398412324}{4779147608947}a^{7}-\frac{37893969406690}{14337442826841}a^{6}-\frac{14064455603012}{14337442826841}a^{5}+\frac{178360043409769}{14337442826841}a^{4}-\frac{37143062568428}{14337442826841}a^{3}-\frac{244067377604054}{14337442826841}a^{2}+\frac{84163366170212}{14337442826841}a+\frac{58563048390871}{14337442826841}, 1808752760814337442826841a115352612028614337442826841a10108966137348814337442826841a9+297033263075514337442826841a8+65434677265644779147608947a74248870510704814337442826841a613926057448842814337442826841a5+19376836297931214337442826841a4+39919833511391214337442826841a325988559966434014337442826841a232443931176042014337442826841a+11374048907985414337442826841\frac{18087527608}{14337442826841}a^{11}-\frac{53526120286}{14337442826841}a^{10}-\frac{1089661373488}{14337442826841}a^{9}+\frac{2970332630755}{14337442826841}a^{8}+\frac{6543467726564}{4779147608947}a^{7}-\frac{42488705107048}{14337442826841}a^{6}-\frac{139260574488428}{14337442826841}a^{5}+\frac{193768362979312}{14337442826841}a^{4}+\frac{399198335113912}{14337442826841}a^{3}-\frac{259885599664340}{14337442826841}a^{2}-\frac{324439311760420}{14337442826841}a+\frac{113740489079854}{14337442826841}, 709780213314337442826841a111020105814714337442826841a101580842591484779147608947a9+49507606120014337442826841a8+35525991248364779147608947a7494301966223714337442826841a6359008755277354779147608947a5+2165464803019414337442826841a4+42287571742208614337442826841a35920139587651314337442826841a21586338582563504779147608947a+365844023487444779147608947\frac{7097802133}{14337442826841}a^{11}-\frac{10201058147}{14337442826841}a^{10}-\frac{158084259148}{4779147608947}a^{9}+\frac{495076061200}{14337442826841}a^{8}+\frac{3552599124836}{4779147608947}a^{7}-\frac{4943019662237}{14337442826841}a^{6}-\frac{35900875527735}{4779147608947}a^{5}+\frac{21654648030194}{14337442826841}a^{4}+\frac{422875717422086}{14337442826841}a^{3}-\frac{59201395876513}{14337442826841}a^{2}-\frac{158633858256350}{4779147608947}a+\frac{36584402348744}{4779147608947}, 102103198714337442826841a11648986502414337442826841a10181857485214779147608947a9+1210894467214779147608947a8+2259933264894779147608947a717676090057364779147608947a685753709736214337442826841a5+2177599835305914337442826841a432482942365694779147608947a31979116889547714337442826841a2+1261749942774214337442826841a+41662141127614337442826841\frac{1021031987}{14337442826841}a^{11}-\frac{6489865024}{14337442826841}a^{10}-\frac{18185748521}{4779147608947}a^{9}+\frac{121089446721}{4779147608947}a^{8}+\frac{225993326489}{4779147608947}a^{7}-\frac{1767609005736}{4779147608947}a^{6}-\frac{857537097362}{14337442826841}a^{5}+\frac{21775998353059}{14337442826841}a^{4}-\frac{3248294236569}{4779147608947}a^{3}-\frac{19791168895477}{14337442826841}a^{2}+\frac{12617499427742}{14337442826841}a+\frac{416621411276}{14337442826841}, 5839819079514337442826841a1131969934401914337442826841a10292293234704514337442826841a9+1771452345246814337442826841a8+3064458047657614337442826841a725621918227683314337442826841a6+41519312878234779147608947a5+115214337442826841a473989544575135414337442826841a3132814337442826841a2+136114337442826841a21335433004019314337442826841\frac{58398190795}{14337442826841}a^{11}-\frac{319699344019}{14337442826841}a^{10}-\frac{2922932347045}{14337442826841}a^{9}+\frac{17714523452468}{14337442826841}a^{8}+\frac{30644580476576}{14337442826841}a^{7}-\frac{256219182276833}{14337442826841}a^{6}+\frac{4151931287823}{4779147608947}a^{5}+\frac{11\cdots 52}{14337442826841}a^{4}-\frac{739895445751354}{14337442826841}a^{3}-\frac{13\cdots 28}{14337442826841}a^{2}+\frac{13\cdots 61}{14337442826841}a-\frac{213354330040193}{14337442826841}, 251870092454779147608947a11900433611904779147608947a10441744707749014337442826841a9+50159236589274779147608947a8+7498280258929914337442826841a721879157966456114337442826841a649690693566748314337442826841a5+3413195505247044779147608947a4+139814337442826841a34365421695999734779147608947a2112614337442826841a+796477005954074779147608947\frac{25187009245}{4779147608947}a^{11}-\frac{90043361190}{4779147608947}a^{10}-\frac{4417447077490}{14337442826841}a^{9}+\frac{5015923658927}{4779147608947}a^{8}+\frac{74982802589299}{14337442826841}a^{7}-\frac{218791579664561}{14337442826841}a^{6}-\frac{496906935667483}{14337442826841}a^{5}+\frac{341319550524704}{4779147608947}a^{4}+\frac{13\cdots 98}{14337442826841}a^{3}-\frac{436542169599973}{4779147608947}a^{2}-\frac{11\cdots 26}{14337442826841}a+\frac{79647700595407}{4779147608947} Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  59483998.235 59483998.235 (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(212(2π)059483998.23512737698544105842578608128(0.14183736065 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 59483998.235 \cdot 1}{2\cdot\sqrt{737698544105842578608128}}\cr\approx \mathstrut & 0.14183736065 \end{aligned} (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C12C_{12} (as 12T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for C12C_{12}
Character table for C12C_{12}

Intermediate fields

Q(13)\Q(\sqrt{13}) , 3.3.361.1, 4.4.35152.1, 6.6.286315237.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 62{\href{/padicField/3.6.0.1}{6} }^{2} 12{\href{/padicField/5.12.0.1}{12} } 43{\href{/padicField/7.4.0.1}{4} }^{3} 43{\href{/padicField/11.4.0.1}{4} }^{3} R 62{\href{/padicField/17.6.0.1}{6} }^{2} R 34{\href{/padicField/23.3.0.1}{3} }^{4} 34{\href{/padicField/29.3.0.1}{3} }^{4} 43{\href{/padicField/31.4.0.1}{4} }^{3} 43{\href{/padicField/37.4.0.1}{4} }^{3} 12{\href{/padicField/41.12.0.1}{12} } 34{\href{/padicField/43.3.0.1}{3} }^{4} 12{\href{/padicField/47.12.0.1}{12} } 34{\href{/padicField/53.3.0.1}{3} }^{4} 12{\href{/padicField/59.12.0.1}{12} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.6.2.12a1.2x12+2x10+2x9+x8+4x7+5x6+2x5+6x4+8x3+x2+4x+5x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 5 x^{6} + 2 x^{5} + 6 x^{4} + 8 x^{3} + x^{2} + 4 x + 522661212C12C_{12}[2]6[2]^{6}
1313 Copy content Toggle raw display 13.3.4.9a1.3x12+8x10+44x9+24x8+264x7+758x6+528x5+2920x4+5676x3+2904x2+10648x+14654x^{12} + 8 x^{10} + 44 x^{9} + 24 x^{8} + 264 x^{7} + 758 x^{6} + 528 x^{5} + 2920 x^{4} + 5676 x^{3} + 2904 x^{2} + 10648 x + 14654443399C12C_{12}[ ]43[\ ]_{4}^{3}
1919 Copy content Toggle raw display 19.4.3.8a1.3x12+6x10+33x9+18x8+132x7+395x6+264x5+762x4+1595x3+750x2+132x+27x^{12} + 6 x^{10} + 33 x^{9} + 18 x^{8} + 132 x^{7} + 395 x^{6} + 264 x^{5} + 762 x^{4} + 1595 x^{3} + 750 x^{2} + 132 x + 27334488C12C_{12}[ ]34[\ ]_{3}^{4}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)