Normalized defining polynomial
\( x^{12} - 4 x^{11} - 57 x^{10} + 226 x^{9} + 906 x^{8} - 3428 x^{7} - 5159 x^{6} + 18006 x^{5} + \cdots - 3371 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(737698544105842578608128\) \(\medspace = 2^{12}\cdot 13^{9}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(97.50\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 13^{3/4}19^{2/3}\approx 97.49669871530843$ | ||
Ramified primes: | \(2\), \(13\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(988=2^{2}\cdot 13\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{988}(1,·)$, $\chi_{988}(805,·)$, $\chi_{988}(961,·)$, $\chi_{988}(619,·)$, $\chi_{988}(77,·)$, $\chi_{988}(463,·)$, $\chi_{988}(83,·)$, $\chi_{988}(885,·)$, $\chi_{988}(723,·)$, $\chi_{988}(343,·)$, $\chi_{988}(729,·)$, $\chi_{988}(239,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{645501}a^{10}+\frac{73201}{645501}a^{9}+\frac{32779}{215167}a^{8}+\frac{20743}{215167}a^{7}-\frac{5292}{215167}a^{6}-\frac{255293}{645501}a^{5}-\frac{57275}{215167}a^{4}-\frac{69142}{215167}a^{3}+\frac{307207}{645501}a^{2}-\frac{180713}{645501}a+\frac{225803}{645501}$, $\frac{1}{14337442826841}a^{11}-\frac{7656815}{14337442826841}a^{10}+\frac{441404369723}{4779147608947}a^{9}-\frac{1401821421569}{14337442826841}a^{8}-\frac{96516588300}{4779147608947}a^{7}-\frac{1657275285320}{14337442826841}a^{6}+\frac{16745023499}{4779147608947}a^{5}+\frac{3107172893549}{14337442826841}a^{4}-\frac{3662257903795}{14337442826841}a^{3}+\frac{5062562272355}{14337442826841}a^{2}+\frac{1814702873909}{4779147608947}a+\frac{1504049512114}{4779147608947}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2090364732}{4779147608947}a^{11}-\frac{3064094550}{4779147608947}a^{10}-\frac{139389370792}{4779147608947}a^{9}+\frac{174503031618}{4779147608947}a^{8}+\frac{3005023414536}{4779147608947}a^{7}-\frac{2576592590670}{4779147608947}a^{6}-\frac{26352852012630}{4779147608947}a^{5}+\frac{13024930337517}{4779147608947}a^{4}+\frac{89534830049210}{4779147608947}a^{3}-\frac{23046622414719}{4779147608947}a^{2}-\frac{82937068675536}{4779147608947}a+\frac{15961309882959}{4779147608947}$, $\frac{1221704656}{4779147608947}a^{11}-\frac{3856674500}{4779147608947}a^{10}-\frac{75654465484}{4779147608947}a^{9}+\frac{224517601213}{4779147608947}a^{8}+\frac{1436977514832}{4779147608947}a^{7}-\frac{3621606614554}{4779147608947}a^{6}-\frac{10973664396788}{4779147608947}a^{5}+\frac{20913754151853}{4779147608947}a^{4}+\frac{33622527537640}{4779147608947}a^{3}-\frac{40820504142676}{4779147608947}a^{2}-\frac{29673244707528}{4779147608947}a+\frac{23088434754151}{4779147608947}$, $\frac{532}{645501}a^{11}-\frac{1996}{645501}a^{10}-\frac{30232}{645501}a^{9}+\frac{110161}{645501}a^{8}+\frac{159308}{215167}a^{7}-\frac{1564918}{645501}a^{6}-\frac{2710418}{645501}a^{5}+\frac{6964621}{645501}a^{4}+\frac{5879602}{645501}a^{3}-\frac{8587763}{645501}a^{2}-\frac{3404932}{645501}a+\frac{1028494}{645501}$, $\frac{2028655600}{4779147608947}a^{11}-\frac{31117474466}{14337442826841}a^{10}-\frac{311809041049}{14337442826841}a^{9}+\frac{569808939520}{4779147608947}a^{8}+\frac{1208181123280}{4779147608947}a^{7}-\frac{8040750199635}{4779147608947}a^{6}-\frac{2066725297097}{4779147608947}a^{5}+\frac{103116500347240}{14337442826841}a^{4}-\frac{26414986826783}{14337442826841}a^{3}-\frac{95679509054206}{14337442826841}a^{2}+\frac{30999625381549}{14337442826841}a-\frac{4565112859756}{14337442826841}$, $\frac{18087527608}{14337442826841}a^{11}-\frac{53526120286}{14337442826841}a^{10}-\frac{1089661373488}{14337442826841}a^{9}+\frac{2970332630755}{14337442826841}a^{8}+\frac{6543467726564}{4779147608947}a^{7}-\frac{42488705107048}{14337442826841}a^{6}-\frac{139260574488428}{14337442826841}a^{5}+\frac{193768362979312}{14337442826841}a^{4}+\frac{399198335113912}{14337442826841}a^{3}-\frac{259885599664340}{14337442826841}a^{2}-\frac{338776754587261}{14337442826841}a+\frac{85065603426172}{14337442826841}$, $\frac{9210453184}{14337442826841}a^{11}-\frac{46711576486}{14337442826841}a^{10}-\frac{480288545188}{14337442826841}a^{9}+\frac{2596867244686}{14337442826841}a^{8}+\frac{1970398412324}{4779147608947}a^{7}-\frac{37893969406690}{14337442826841}a^{6}-\frac{14064455603012}{14337442826841}a^{5}+\frac{178360043409769}{14337442826841}a^{4}-\frac{37143062568428}{14337442826841}a^{3}-\frac{244067377604054}{14337442826841}a^{2}+\frac{84163366170212}{14337442826841}a+\frac{58563048390871}{14337442826841}$, $\frac{18087527608}{14337442826841}a^{11}-\frac{53526120286}{14337442826841}a^{10}-\frac{1089661373488}{14337442826841}a^{9}+\frac{2970332630755}{14337442826841}a^{8}+\frac{6543467726564}{4779147608947}a^{7}-\frac{42488705107048}{14337442826841}a^{6}-\frac{139260574488428}{14337442826841}a^{5}+\frac{193768362979312}{14337442826841}a^{4}+\frac{399198335113912}{14337442826841}a^{3}-\frac{259885599664340}{14337442826841}a^{2}-\frac{324439311760420}{14337442826841}a+\frac{113740489079854}{14337442826841}$, $\frac{7097802133}{14337442826841}a^{11}-\frac{10201058147}{14337442826841}a^{10}-\frac{158084259148}{4779147608947}a^{9}+\frac{495076061200}{14337442826841}a^{8}+\frac{3552599124836}{4779147608947}a^{7}-\frac{4943019662237}{14337442826841}a^{6}-\frac{35900875527735}{4779147608947}a^{5}+\frac{21654648030194}{14337442826841}a^{4}+\frac{422875717422086}{14337442826841}a^{3}-\frac{59201395876513}{14337442826841}a^{2}-\frac{158633858256350}{4779147608947}a+\frac{36584402348744}{4779147608947}$, $\frac{1021031987}{14337442826841}a^{11}-\frac{6489865024}{14337442826841}a^{10}-\frac{18185748521}{4779147608947}a^{9}+\frac{121089446721}{4779147608947}a^{8}+\frac{225993326489}{4779147608947}a^{7}-\frac{1767609005736}{4779147608947}a^{6}-\frac{857537097362}{14337442826841}a^{5}+\frac{21775998353059}{14337442826841}a^{4}-\frac{3248294236569}{4779147608947}a^{3}-\frac{19791168895477}{14337442826841}a^{2}+\frac{12617499427742}{14337442826841}a+\frac{416621411276}{14337442826841}$, $\frac{58398190795}{14337442826841}a^{11}-\frac{319699344019}{14337442826841}a^{10}-\frac{2922932347045}{14337442826841}a^{9}+\frac{17714523452468}{14337442826841}a^{8}+\frac{30644580476576}{14337442826841}a^{7}-\frac{256219182276833}{14337442826841}a^{6}+\frac{4151931287823}{4779147608947}a^{5}+\frac{11\!\cdots\!52}{14337442826841}a^{4}-\frac{739895445751354}{14337442826841}a^{3}-\frac{13\!\cdots\!28}{14337442826841}a^{2}+\frac{13\!\cdots\!61}{14337442826841}a-\frac{213354330040193}{14337442826841}$, $\frac{25187009245}{4779147608947}a^{11}-\frac{90043361190}{4779147608947}a^{10}-\frac{4417447077490}{14337442826841}a^{9}+\frac{5015923658927}{4779147608947}a^{8}+\frac{74982802589299}{14337442826841}a^{7}-\frac{218791579664561}{14337442826841}a^{6}-\frac{496906935667483}{14337442826841}a^{5}+\frac{341319550524704}{4779147608947}a^{4}+\frac{13\!\cdots\!98}{14337442826841}a^{3}-\frac{436542169599973}{4779147608947}a^{2}-\frac{11\!\cdots\!26}{14337442826841}a+\frac{79647700595407}{4779147608947}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 59483998.235 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 59483998.235 \cdot 1}{2\cdot\sqrt{737698544105842578608128}}\cr\approx \mathstrut & 0.14183736065 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{13}) \), 3.3.361.1, 4.4.35152.1, 6.6.286315237.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(13\) | 13.12.9.2 | $x^{12} + 8 x^{10} + 44 x^{9} + 63 x^{8} + 264 x^{7} + 550 x^{6} - 6336 x^{5} + 3843 x^{4} + 4532 x^{3} + 46454 x^{2} + 30668 x + 30982$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(19\) | 19.12.8.1 | $x^{12} + 386 x^{10} + 109 x^{9} + 55308 x^{8} + 21792 x^{7} + 3500499 x^{6} + 2034936 x^{5} + 84821873 x^{4} + 99877907 x^{3} + 174885148 x^{2} + 920938017 x + 335157671$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |