Normalized defining polynomial
\( x^{12} - 11x^{6} - 18x^{3} + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-3792912694161408\) \(\medspace = -\,2^{12}\cdot 3^{9}\cdot 19^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(19.87\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{7/6}19^{2/3}\approx 51.306673774406136$ | ||
Ramified primes: | \(2\), \(3\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{6}-\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{1}{3}a$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{9}a^{7}-\frac{1}{9}a^{6}-\frac{1}{9}a^{4}+\frac{1}{9}a^{3}-\frac{1}{9}a+\frac{1}{9}$, $\frac{1}{9}a^{11}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{1}{9}a^{6}-\frac{1}{9}a^{5}+\frac{1}{9}a^{3}-\frac{1}{9}a^{2}+\frac{1}{9}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{2}{9}a^{11}-\frac{2}{9}a^{10}-\frac{1}{9}a^{8}+\frac{1}{9}a^{7}-\frac{20}{9}a^{5}+\frac{20}{9}a^{4}-\frac{26}{9}a^{2}+\frac{26}{9}a$, $\frac{1}{9}a^{11}+\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{2}{9}a^{8}-\frac{2}{9}a^{7}-\frac{2}{9}a^{6}-\frac{7}{9}a^{5}-\frac{7}{9}a^{4}-\frac{7}{9}a^{3}-\frac{4}{9}a^{2}-\frac{4}{9}a-\frac{4}{9}$, $\frac{2}{3}a^{11}-\frac{1}{3}a^{10}-\frac{22}{3}a^{5}+\frac{11}{3}a^{4}+\frac{1}{3}a^{3}-\frac{35}{3}a^{2}+\frac{19}{3}a-\frac{2}{3}$, $\frac{1}{9}a^{11}+\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{9}a^{8}+\frac{1}{9}a^{7}-\frac{2}{9}a^{6}-\frac{13}{9}a^{5}-\frac{13}{9}a^{4}-\frac{13}{9}a^{3}-\frac{22}{9}a^{2}-\frac{22}{9}a-\frac{1}{9}$, $\frac{2}{9}a^{11}+\frac{1}{9}a^{10}-\frac{1}{9}a^{8}-\frac{2}{9}a^{7}-\frac{20}{9}a^{5}-\frac{10}{9}a^{4}-\frac{26}{9}a^{2}+\frac{2}{9}a+1$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1280.93521147 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 1280.93521147 \cdot 1}{2\cdot\sqrt{3792912694161408}}\cr\approx \mathstrut & 0.407352211533 \end{aligned}\]
Galois group
$C_3^3:S_4$ (as 12T178):
A solvable group of order 648 |
The 14 conjugacy class representatives for $C_3^3:S_4$ |
Character table for $C_3^3:S_4$ |
Intermediate fields
4.2.17328.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 9 sibling: | data not computed |
Degree 12 siblings: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 9.1.4938688403856.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(3\) | 3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.6.6.4 | $x^{6} + 48 x^{4} + 6 x^{3} + 36 x^{2} + 36 x + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
\(19\) | $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
19.9.6.2 | $x^{9} + 981 x^{7} + 108 x^{6} + 316911 x^{5} + 20529 x^{4} + 34115982 x^{3} + 10990188 x^{2} + 130942880 x + 566550143$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |