Normalized defining polynomial
\( x^{12} - 4 x^{11} + 5 x^{10} - 16 x^{9} + 139 x^{8} - 620 x^{7} + 9067 x^{6} + 12152 x^{5} + \cdots - 936752 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-9621842244611119611904\) \(\medspace = -\,2^{15}\cdot 17^{9}\cdot 19^{5}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(67.91\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}17^{3/4}19^{1/2}\approx 103.21872376945974$ | ||
Ramified primes: | \(2\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-646}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}$, $\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{80}a^{8}-\frac{1}{16}a^{7}-\frac{9}{80}a^{6}+\frac{1}{16}a^{5}-\frac{1}{10}a^{4}-\frac{1}{4}a^{3}+\frac{1}{5}a^{2}-\frac{1}{4}a-\frac{3}{10}$, $\frac{1}{160}a^{9}-\frac{1}{40}a^{7}+\frac{1}{16}a^{6}+\frac{7}{160}a^{5}+\frac{3}{16}a^{4}-\frac{3}{20}a^{3}-\frac{1}{2}a^{2}+\frac{9}{40}a-\frac{1}{4}$, $\frac{1}{640}a^{10}+\frac{1}{640}a^{9}-\frac{1}{160}a^{8}+\frac{3}{320}a^{7}+\frac{17}{640}a^{6}+\frac{37}{640}a^{5}+\frac{43}{320}a^{4}+\frac{7}{80}a^{3}+\frac{9}{160}a^{2}+\frac{39}{160}a+\frac{3}{16}$, $\frac{1}{11\!\cdots\!40}a^{11}+\frac{38\!\cdots\!47}{10\!\cdots\!40}a^{10}+\frac{38\!\cdots\!41}{28\!\cdots\!60}a^{9}-\frac{15\!\cdots\!31}{30\!\cdots\!80}a^{8}-\frac{68\!\cdots\!59}{22\!\cdots\!08}a^{7}+\frac{42\!\cdots\!99}{10\!\cdots\!40}a^{6}-\frac{13\!\cdots\!29}{57\!\cdots\!20}a^{5}+\frac{24\!\cdots\!19}{14\!\cdots\!80}a^{4}-\frac{36\!\cdots\!01}{15\!\cdots\!40}a^{3}-\frac{14\!\cdots\!57}{28\!\cdots\!60}a^{2}+\frac{11\!\cdots\!31}{14\!\cdots\!80}a+\frac{14\!\cdots\!23}{17\!\cdots\!86}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{59\!\cdots\!33}{22\!\cdots\!08}a^{11}-\frac{68\!\cdots\!11}{20\!\cdots\!28}a^{10}+\frac{54\!\cdots\!81}{11\!\cdots\!04}a^{9}+\frac{17\!\cdots\!49}{60\!\cdots\!16}a^{8}+\frac{51\!\cdots\!17}{22\!\cdots\!08}a^{7}-\frac{19\!\cdots\!11}{20\!\cdots\!28}a^{6}+\frac{21\!\cdots\!11}{57\!\cdots\!52}a^{5}-\frac{38\!\cdots\!41}{57\!\cdots\!52}a^{4}-\frac{19\!\cdots\!25}{30\!\cdots\!08}a^{3}+\frac{62\!\cdots\!41}{57\!\cdots\!52}a^{2}+\frac{23\!\cdots\!83}{17\!\cdots\!86}a+\frac{51\!\cdots\!13}{14\!\cdots\!88}$, $\frac{6011878497}{26\!\cdots\!20}a^{11}-\frac{359402039}{243013929158720}a^{10}-\frac{27187430451}{13\!\cdots\!60}a^{9}+\frac{49725169699}{13\!\cdots\!60}a^{8}+\frac{6999772993}{534630644149184}a^{7}-\frac{34926629531}{243013929158720}a^{6}+\frac{10291797253731}{668288305186480}a^{5}+\frac{12981597790247}{133657661037296}a^{4}+\frac{90297184295917}{668288305186480}a^{3}+\frac{754983958747657}{668288305186480}a^{2}+\frac{51314924953889}{41768019074155}a-\frac{10\!\cdots\!83}{167072076296620}$, $\frac{12\!\cdots\!43}{14\!\cdots\!80}a^{11}-\frac{14\!\cdots\!57}{51\!\cdots\!20}a^{10}-\frac{63\!\cdots\!67}{57\!\cdots\!20}a^{9}+\frac{15\!\cdots\!41}{75\!\cdots\!20}a^{8}+\frac{18\!\cdots\!01}{57\!\cdots\!52}a^{7}-\frac{27\!\cdots\!21}{51\!\cdots\!20}a^{6}+\frac{18\!\cdots\!09}{57\!\cdots\!20}a^{5}+\frac{23\!\cdots\!07}{28\!\cdots\!60}a^{4}-\frac{78\!\cdots\!81}{37\!\cdots\!60}a^{3}-\frac{36\!\cdots\!31}{14\!\cdots\!80}a^{2}-\frac{49\!\cdots\!01}{14\!\cdots\!80}a+\frac{44\!\cdots\!11}{71\!\cdots\!40}$, $\frac{34\!\cdots\!89}{22\!\cdots\!08}a^{11}-\frac{58\!\cdots\!47}{10\!\cdots\!40}a^{10}+\frac{36\!\cdots\!39}{57\!\cdots\!20}a^{9}+\frac{28\!\cdots\!37}{30\!\cdots\!80}a^{8}+\frac{22\!\cdots\!53}{11\!\cdots\!40}a^{7}-\frac{14\!\cdots\!51}{10\!\cdots\!40}a^{6}+\frac{17\!\cdots\!07}{14\!\cdots\!80}a^{5}+\frac{87\!\cdots\!41}{28\!\cdots\!60}a^{4}+\frac{11\!\cdots\!43}{15\!\cdots\!40}a^{3}+\frac{15\!\cdots\!29}{28\!\cdots\!60}a^{2}+\frac{48\!\cdots\!93}{71\!\cdots\!40}a+\frac{72\!\cdots\!43}{71\!\cdots\!40}$, $\frac{21\!\cdots\!31}{11\!\cdots\!40}a^{11}-\frac{93\!\cdots\!85}{20\!\cdots\!28}a^{10}-\frac{59\!\cdots\!83}{57\!\cdots\!20}a^{9}-\frac{29\!\cdots\!69}{60\!\cdots\!16}a^{8}+\frac{11\!\cdots\!15}{22\!\cdots\!08}a^{7}-\frac{13\!\cdots\!85}{20\!\cdots\!28}a^{6}+\frac{96\!\cdots\!37}{71\!\cdots\!40}a^{5}+\frac{21\!\cdots\!51}{57\!\cdots\!52}a^{4}+\frac{12\!\cdots\!49}{15\!\cdots\!40}a^{3}-\frac{41\!\cdots\!93}{57\!\cdots\!52}a^{2}-\frac{10\!\cdots\!67}{71\!\cdots\!40}a-\frac{45\!\cdots\!71}{14\!\cdots\!88}$, $\frac{70\!\cdots\!23}{28\!\cdots\!60}a^{11}-\frac{33\!\cdots\!03}{51\!\cdots\!20}a^{10}+\frac{10\!\cdots\!69}{57\!\cdots\!20}a^{9}-\frac{78\!\cdots\!73}{75\!\cdots\!52}a^{8}+\frac{17\!\cdots\!97}{28\!\cdots\!76}a^{7}-\frac{10\!\cdots\!23}{51\!\cdots\!20}a^{6}+\frac{52\!\cdots\!37}{57\!\cdots\!20}a^{5}-\frac{36\!\cdots\!81}{28\!\cdots\!60}a^{4}+\frac{24\!\cdots\!91}{18\!\cdots\!80}a^{3}-\frac{20\!\cdots\!29}{28\!\cdots\!76}a^{2}+\frac{59\!\cdots\!07}{14\!\cdots\!80}a-\frac{30\!\cdots\!09}{71\!\cdots\!40}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 79246391.31530055 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 79246391.31530055 \cdot 2}{2\cdot\sqrt{9621842244611119611904}}\cr\approx \mathstrut & 31.6453360337721 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 24 |
The 9 conjugacy class representatives for $D_{12}$ |
Character table for $D_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.1.152.1, 4.2.746776.1, 6.2.113509952.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 12 sibling: | 12.0.1462520021180890181009408.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(19\) | $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.152.2t1.b.a | $1$ | $ 2^{3} \cdot 19 $ | \(\Q(\sqrt{-38}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.2584.2t1.b.a | $1$ | $ 2^{3} \cdot 17 \cdot 19 $ | \(\Q(\sqrt{-646}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.152.3t2.b.a | $2$ | $ 2^{3} \cdot 19 $ | 3.1.152.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.43928.6t3.b.a | $2$ | $ 2^{3} \cdot 17^{2} \cdot 19 $ | 6.2.113509952.3 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.43928.4t3.b.a | $2$ | $ 2^{3} \cdot 17^{2} \cdot 19 $ | 4.2.746776.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.43928.12t12.b.b | $2$ | $ 2^{3} \cdot 17^{2} \cdot 19 $ | 12.2.9621842244611119611904.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |
* | 2.43928.12t12.b.a | $2$ | $ 2^{3} \cdot 17^{2} \cdot 19 $ | 12.2.9621842244611119611904.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |