sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752)
gp: K = bnfinit(y^12 - 4*y^11 + 5*y^10 - 16*y^9 + 139*y^8 - 620*y^7 + 9067*y^6 + 12152*y^5 + 29456*y^4 + 238584*y^3 - 142428*y^2 - 88432*y - 936752, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752)
x 12 − 4 x 11 + 5 x 10 − 16 x 9 + 139 x 8 − 620 x 7 + 9067 x 6 + 12152 x 5 + ⋯ − 936752 x^{12} - 4 x^{11} + 5 x^{10} - 16 x^{9} + 139 x^{8} - 620 x^{7} + 9067 x^{6} + 12152 x^{5} + \cdots - 936752 x 1 2 − 4 x 1 1 + 5 x 1 0 − 1 6 x 9 + 1 3 9 x 8 − 6 2 0 x 7 + 9 0 6 7 x 6 + 1 2 1 5 2 x 5 + ⋯ − 9 3 6 7 5 2
sage: K.defining_polynomial()
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree : 12 12 1 2
Signature : [ 2 , 5 ] [2, 5] [ 2 , 5 ]
Discriminant :
− 9621842244611119611904 -9621842244611119611904 − 9 6 2 1 8 4 2 2 4 4 6 1 1 1 1 9 6 1 1 9 0 4
= − 2 15 ⋅ 1 7 9 ⋅ 1 9 5 \medspace = -\,2^{15}\cdot 17^{9}\cdot 19^{5} = − 2 1 5 ⋅ 1 7 9 ⋅ 1 9 5
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
Root discriminant : 67.91 67.91 6 7 . 9 1 sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
Galois root discriminant : 2 3 / 2 1 7 3 / 4 1 9 1 / 2 ≈ 103.21872376945974 2^{3/2}17^{3/4}19^{1/2}\approx 103.21872376945974 2 3 / 2 1 7 3 / 4 1 9 1 / 2 ≈ 1 0 3 . 2 1 8 7 2 3 7 6 9 4 5 9 7 4
Ramified primes :
2 2 2 , 17 17 1 7 , 19 19 1 9
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
Discriminant root field : Q ( − 646 ) \Q(\sqrt{-646}) Q ( − 6 4 6 )
Aut ( K / Q ) \Aut(K/\Q) A u t ( K / Q ) :
C 2 C_2 C 2
This field is not Galois over Q \Q Q .
This is not a CM field .
1 1 1 , a a a , a 2 a^{2} a 2 , 1 2 a 3 − 1 2 a 2 \frac{1}{2}a^{3}-\frac{1}{2}a^{2} 2 1 a 3 − 2 1 a 2 , 1 2 a 4 − 1 2 a 2 \frac{1}{2}a^{4}-\frac{1}{2}a^{2} 2 1 a 4 − 2 1 a 2 , 1 4 a 5 − 1 4 a 3 − 1 2 a 2 − 1 2 a \frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a 4 1 a 5 − 4 1 a 3 − 2 1 a 2 − 2 1 a , 1 4 a 6 − 1 4 a 4 \frac{1}{4}a^{6}-\frac{1}{4}a^{4} 4 1 a 6 − 4 1 a 4 , 1 8 a 7 − 1 8 a 6 − 1 8 a 5 − 1 8 a 4 − 1 4 a 2 − 1 2 a \frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a 8 1 a 7 − 8 1 a 6 − 8 1 a 5 − 8 1 a 4 − 4 1 a 2 − 2 1 a , 1 80 a 8 − 1 16 a 7 − 9 80 a 6 + 1 16 a 5 − 1 10 a 4 − 1 4 a 3 + 1 5 a 2 − 1 4 a − 3 10 \frac{1}{80}a^{8}-\frac{1}{16}a^{7}-\frac{9}{80}a^{6}+\frac{1}{16}a^{5}-\frac{1}{10}a^{4}-\frac{1}{4}a^{3}+\frac{1}{5}a^{2}-\frac{1}{4}a-\frac{3}{10} 8 0 1 a 8 − 1 6 1 a 7 − 8 0 9 a 6 + 1 6 1 a 5 − 1 0 1 a 4 − 4 1 a 3 + 5 1 a 2 − 4 1 a − 1 0 3 , 1 160 a 9 − 1 40 a 7 + 1 16 a 6 + 7 160 a 5 + 3 16 a 4 − 3 20 a 3 − 1 2 a 2 + 9 40 a − 1 4 \frac{1}{160}a^{9}-\frac{1}{40}a^{7}+\frac{1}{16}a^{6}+\frac{7}{160}a^{5}+\frac{3}{16}a^{4}-\frac{3}{20}a^{3}-\frac{1}{2}a^{2}+\frac{9}{40}a-\frac{1}{4} 1 6 0 1 a 9 − 4 0 1 a 7 + 1 6 1 a 6 + 1 6 0 7 a 5 + 1 6 3 a 4 − 2 0 3 a 3 − 2 1 a 2 + 4 0 9 a − 4 1 , 1 640 a 10 + 1 640 a 9 − 1 160 a 8 + 3 320 a 7 + 17 640 a 6 + 37 640 a 5 + 43 320 a 4 + 7 80 a 3 + 9 160 a 2 + 39 160 a + 3 16 \frac{1}{640}a^{10}+\frac{1}{640}a^{9}-\frac{1}{160}a^{8}+\frac{3}{320}a^{7}+\frac{17}{640}a^{6}+\frac{37}{640}a^{5}+\frac{43}{320}a^{4}+\frac{7}{80}a^{3}+\frac{9}{160}a^{2}+\frac{39}{160}a+\frac{3}{16} 6 4 0 1 a 1 0 + 6 4 0 1 a 9 − 1 6 0 1 a 8 + 3 2 0 3 a 7 + 6 4 0 1 7 a 6 + 6 4 0 3 7 a 5 + 3 2 0 4 3 a 4 + 8 0 7 a 3 + 1 6 0 9 a 2 + 1 6 0 3 9 a + 1 6 3 , 1 11 ⋯ 40 a 11 + 38 ⋯ 47 10 ⋯ 40 a 10 + 38 ⋯ 41 28 ⋯ 60 a 9 − 15 ⋯ 31 30 ⋯ 80 a 8 − 68 ⋯ 59 22 ⋯ 08 a 7 + 42 ⋯ 99 10 ⋯ 40 a 6 − 13 ⋯ 29 57 ⋯ 20 a 5 + 24 ⋯ 19 14 ⋯ 80 a 4 − 36 ⋯ 01 15 ⋯ 40 a 3 − 14 ⋯ 57 28 ⋯ 60 a 2 + 11 ⋯ 31 14 ⋯ 80 a + 14 ⋯ 23 17 ⋯ 86 \frac{1}{11\!\cdots\!40}a^{11}+\frac{38\!\cdots\!47}{10\!\cdots\!40}a^{10}+\frac{38\!\cdots\!41}{28\!\cdots\!60}a^{9}-\frac{15\!\cdots\!31}{30\!\cdots\!80}a^{8}-\frac{68\!\cdots\!59}{22\!\cdots\!08}a^{7}+\frac{42\!\cdots\!99}{10\!\cdots\!40}a^{6}-\frac{13\!\cdots\!29}{57\!\cdots\!20}a^{5}+\frac{24\!\cdots\!19}{14\!\cdots\!80}a^{4}-\frac{36\!\cdots\!01}{15\!\cdots\!40}a^{3}-\frac{14\!\cdots\!57}{28\!\cdots\!60}a^{2}+\frac{11\!\cdots\!31}{14\!\cdots\!80}a+\frac{14\!\cdots\!23}{17\!\cdots\!86} 1 1 ⋯ 4 0 1 a 1 1 + 1 0 ⋯ 4 0 3 8 ⋯ 4 7 a 1 0 + 2 8 ⋯ 6 0 3 8 ⋯ 4 1 a 9 − 3 0 ⋯ 8 0 1 5 ⋯ 3 1 a 8 − 2 2 ⋯ 0 8 6 8 ⋯ 5 9 a 7 + 1 0 ⋯ 4 0 4 2 ⋯ 9 9 a 6 − 5 7 ⋯ 2 0 1 3 ⋯ 2 9 a 5 + 1 4 ⋯ 8 0 2 4 ⋯ 1 9 a 4 − 1 5 ⋯ 4 0 3 6 ⋯ 0 1 a 3 − 2 8 ⋯ 6 0 1 4 ⋯ 5 7 a 2 + 1 4 ⋯ 8 0 1 1 ⋯ 3 1 a + 1 7 ⋯ 8 6 1 4 ⋯ 2 3
C 2 C_{2} C 2 , which has order 2 2 2
(assuming GRH )
sage: K.class_group().invariants()
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank : 6 6 6
Torsion generator :
− 1 -1 − 1
(order 2 2 2 )
sage: UK.torsion_generator()
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
Fundamental units :
59 ⋯ 33 22 ⋯ 08 a 11 − 68 ⋯ 11 20 ⋯ 28 a 10 + 54 ⋯ 81 11 ⋯ 04 a 9 + 17 ⋯ 49 60 ⋯ 16 a 8 + 51 ⋯ 17 22 ⋯ 08 a 7 − 19 ⋯ 11 20 ⋯ 28 a 6 + 21 ⋯ 11 57 ⋯ 52 a 5 − 38 ⋯ 41 57 ⋯ 52 a 4 − 19 ⋯ 25 30 ⋯ 08 a 3 + 62 ⋯ 41 57 ⋯ 52 a 2 + 23 ⋯ 83 17 ⋯ 86 a + 51 ⋯ 13 14 ⋯ 88 \frac{59\!\cdots\!33}{22\!\cdots\!08}a^{11}-\frac{68\!\cdots\!11}{20\!\cdots\!28}a^{10}+\frac{54\!\cdots\!81}{11\!\cdots\!04}a^{9}+\frac{17\!\cdots\!49}{60\!\cdots\!16}a^{8}+\frac{51\!\cdots\!17}{22\!\cdots\!08}a^{7}-\frac{19\!\cdots\!11}{20\!\cdots\!28}a^{6}+\frac{21\!\cdots\!11}{57\!\cdots\!52}a^{5}-\frac{38\!\cdots\!41}{57\!\cdots\!52}a^{4}-\frac{19\!\cdots\!25}{30\!\cdots\!08}a^{3}+\frac{62\!\cdots\!41}{57\!\cdots\!52}a^{2}+\frac{23\!\cdots\!83}{17\!\cdots\!86}a+\frac{51\!\cdots\!13}{14\!\cdots\!88} 2 2 ⋯ 0 8 5 9 ⋯ 3 3 a 1 1 − 2 0 ⋯ 2 8 6 8 ⋯ 1 1 a 1 0 + 1 1 ⋯ 0 4 5 4 ⋯ 8 1 a 9 + 6 0 ⋯ 1 6 1 7 ⋯ 4 9 a 8 + 2 2 ⋯ 0 8 5 1 ⋯ 1 7 a 7 − 2 0 ⋯ 2 8 1 9 ⋯ 1 1 a 6 + 5 7 ⋯ 5 2 2 1 ⋯ 1 1 a 5 − 5 7 ⋯ 5 2 3 8 ⋯ 4 1 a 4 − 3 0 ⋯ 0 8 1 9 ⋯ 2 5 a 3 + 5 7 ⋯ 5 2 6 2 ⋯ 4 1 a 2 + 1 7 ⋯ 8 6 2 3 ⋯ 8 3 a + 1 4 ⋯ 8 8 5 1 ⋯ 1 3 , 6011878497 26 ⋯ 20 a 11 − 359402039 243013929158720 a 10 − 27187430451 13 ⋯ 60 a 9 + 49725169699 13 ⋯ 60 a 8 + 6999772993 534630644149184 a 7 − 34926629531 243013929158720 a 6 + 10291797253731 668288305186480 a 5 + 12981597790247 133657661037296 a 4 + 90297184295917 668288305186480 a 3 + 754983958747657 668288305186480 a 2 + 51314924953889 41768019074155 a − 10 ⋯ 83 167072076296620 \frac{6011878497}{26\!\cdots\!20}a^{11}-\frac{359402039}{243013929158720}a^{10}-\frac{27187430451}{13\!\cdots\!60}a^{9}+\frac{49725169699}{13\!\cdots\!60}a^{8}+\frac{6999772993}{534630644149184}a^{7}-\frac{34926629531}{243013929158720}a^{6}+\frac{10291797253731}{668288305186480}a^{5}+\frac{12981597790247}{133657661037296}a^{4}+\frac{90297184295917}{668288305186480}a^{3}+\frac{754983958747657}{668288305186480}a^{2}+\frac{51314924953889}{41768019074155}a-\frac{10\!\cdots\!83}{167072076296620} 2 6 ⋯ 2 0 6 0 1 1 8 7 8 4 9 7 a 1 1 − 2 4 3 0 1 3 9 2 9 1 5 8 7 2 0 3 5 9 4 0 2 0 3 9 a 1 0 − 1 3 ⋯ 6 0 2 7 1 8 7 4 3 0 4 5 1 a 9 + 1 3 ⋯ 6 0 4 9 7 2 5 1 6 9 6 9 9 a 8 + 5 3 4 6 3 0 6 4 4 1 4 9 1 8 4 6 9 9 9 7 7 2 9 9 3 a 7 − 2 4 3 0 1 3 9 2 9 1 5 8 7 2 0 3 4 9 2 6 6 2 9 5 3 1 a 6 + 6 6 8 2 8 8 3 0 5 1 8 6 4 8 0 1 0 2 9 1 7 9 7 2 5 3 7 3 1 a 5 + 1 3 3 6 5 7 6 6 1 0 3 7 2 9 6 1 2 9 8 1 5 9 7 7 9 0 2 4 7 a 4 + 6 6 8 2 8 8 3 0 5 1 8 6 4 8 0 9 0 2 9 7 1 8 4 2 9 5 9 1 7 a 3 + 6 6 8 2 8 8 3 0 5 1 8 6 4 8 0 7 5 4 9 8 3 9 5 8 7 4 7 6 5 7 a 2 + 4 1 7 6 8 0 1 9 0 7 4 1 5 5 5 1 3 1 4 9 2 4 9 5 3 8 8 9 a − 1 6 7 0 7 2 0 7 6 2 9 6 6 2 0 1 0 ⋯ 8 3 , 12 ⋯ 43 14 ⋯ 80 a 11 − 14 ⋯ 57 51 ⋯ 20 a 10 − 63 ⋯ 67 57 ⋯ 20 a 9 + 15 ⋯ 41 75 ⋯ 20 a 8 + 18 ⋯ 01 57 ⋯ 52 a 7 − 27 ⋯ 21 51 ⋯ 20 a 6 + 18 ⋯ 09 57 ⋯ 20 a 5 + 23 ⋯ 07 28 ⋯ 60 a 4 − 78 ⋯ 81 37 ⋯ 60 a 3 − 36 ⋯ 31 14 ⋯ 80 a 2 − 49 ⋯ 01 14 ⋯ 80 a + 44 ⋯ 11 71 ⋯ 40 \frac{12\!\cdots\!43}{14\!\cdots\!80}a^{11}-\frac{14\!\cdots\!57}{51\!\cdots\!20}a^{10}-\frac{63\!\cdots\!67}{57\!\cdots\!20}a^{9}+\frac{15\!\cdots\!41}{75\!\cdots\!20}a^{8}+\frac{18\!\cdots\!01}{57\!\cdots\!52}a^{7}-\frac{27\!\cdots\!21}{51\!\cdots\!20}a^{6}+\frac{18\!\cdots\!09}{57\!\cdots\!20}a^{5}+\frac{23\!\cdots\!07}{28\!\cdots\!60}a^{4}-\frac{78\!\cdots\!81}{37\!\cdots\!60}a^{3}-\frac{36\!\cdots\!31}{14\!\cdots\!80}a^{2}-\frac{49\!\cdots\!01}{14\!\cdots\!80}a+\frac{44\!\cdots\!11}{71\!\cdots\!40} 1 4 ⋯ 8 0 1 2 ⋯ 4 3 a 1 1 − 5 1 ⋯ 2 0 1 4 ⋯ 5 7 a 1 0 − 5 7 ⋯ 2 0 6 3 ⋯ 6 7 a 9 + 7 5 ⋯ 2 0 1 5 ⋯ 4 1 a 8 + 5 7 ⋯ 5 2 1 8 ⋯ 0 1 a 7 − 5 1 ⋯ 2 0 2 7 ⋯ 2 1 a 6 + 5 7 ⋯ 2 0 1 8 ⋯ 0 9 a 5 + 2 8 ⋯ 6 0 2 3 ⋯ 0 7 a 4 − 3 7 ⋯ 6 0 7 8 ⋯ 8 1 a 3 − 1 4 ⋯ 8 0 3 6 ⋯ 3 1 a 2 − 1 4 ⋯ 8 0 4 9 ⋯ 0 1 a + 7 1 ⋯ 4 0 4 4 ⋯ 1 1 , 34 ⋯ 89 22 ⋯ 08 a 11 − 58 ⋯ 47 10 ⋯ 40 a 10 + 36 ⋯ 39 57 ⋯ 20 a 9 + 28 ⋯ 37 30 ⋯ 80 a 8 + 22 ⋯ 53 11 ⋯ 40 a 7 − 14 ⋯ 51 10 ⋯ 40 a 6 + 17 ⋯ 07 14 ⋯ 80 a 5 + 87 ⋯ 41 28 ⋯ 60 a 4 + 11 ⋯ 43 15 ⋯ 40 a 3 + 15 ⋯ 29 28 ⋯ 60 a 2 + 48 ⋯ 93 71 ⋯ 40 a + 72 ⋯ 43 71 ⋯ 40 \frac{34\!\cdots\!89}{22\!\cdots\!08}a^{11}-\frac{58\!\cdots\!47}{10\!\cdots\!40}a^{10}+\frac{36\!\cdots\!39}{57\!\cdots\!20}a^{9}+\frac{28\!\cdots\!37}{30\!\cdots\!80}a^{8}+\frac{22\!\cdots\!53}{11\!\cdots\!40}a^{7}-\frac{14\!\cdots\!51}{10\!\cdots\!40}a^{6}+\frac{17\!\cdots\!07}{14\!\cdots\!80}a^{5}+\frac{87\!\cdots\!41}{28\!\cdots\!60}a^{4}+\frac{11\!\cdots\!43}{15\!\cdots\!40}a^{3}+\frac{15\!\cdots\!29}{28\!\cdots\!60}a^{2}+\frac{48\!\cdots\!93}{71\!\cdots\!40}a+\frac{72\!\cdots\!43}{71\!\cdots\!40} 2 2 ⋯ 0 8 3 4 ⋯ 8 9 a 1 1 − 1 0 ⋯ 4 0 5 8 ⋯ 4 7 a 1 0 + 5 7 ⋯ 2 0 3 6 ⋯ 3 9 a 9 + 3 0 ⋯ 8 0 2 8 ⋯ 3 7 a 8 + 1 1 ⋯ 4 0 2 2 ⋯ 5 3 a 7 − 1 0 ⋯ 4 0 1 4 ⋯ 5 1 a 6 + 1 4 ⋯ 8 0 1 7 ⋯ 0 7 a 5 + 2 8 ⋯ 6 0 8 7 ⋯ 4 1 a 4 + 1 5 ⋯ 4 0 1 1 ⋯ 4 3 a 3 + 2 8 ⋯ 6 0 1 5 ⋯ 2 9 a 2 + 7 1 ⋯ 4 0 4 8 ⋯ 9 3 a + 7 1 ⋯ 4 0 7 2 ⋯ 4 3 , 21 ⋯ 31 11 ⋯ 40 a 11 − 93 ⋯ 85 20 ⋯ 28 a 10 − 59 ⋯ 83 57 ⋯ 20 a 9 − 29 ⋯ 69 60 ⋯ 16 a 8 + 11 ⋯ 15 22 ⋯ 08 a 7 − 13 ⋯ 85 20 ⋯ 28 a 6 + 96 ⋯ 37 71 ⋯ 40 a 5 + 21 ⋯ 51 57 ⋯ 52 a 4 + 12 ⋯ 49 15 ⋯ 40 a 3 − 41 ⋯ 93 57 ⋯ 52 a 2 − 10 ⋯ 67 71 ⋯ 40 a − 45 ⋯ 71 14 ⋯ 88 \frac{21\!\cdots\!31}{11\!\cdots\!40}a^{11}-\frac{93\!\cdots\!85}{20\!\cdots\!28}a^{10}-\frac{59\!\cdots\!83}{57\!\cdots\!20}a^{9}-\frac{29\!\cdots\!69}{60\!\cdots\!16}a^{8}+\frac{11\!\cdots\!15}{22\!\cdots\!08}a^{7}-\frac{13\!\cdots\!85}{20\!\cdots\!28}a^{6}+\frac{96\!\cdots\!37}{71\!\cdots\!40}a^{5}+\frac{21\!\cdots\!51}{57\!\cdots\!52}a^{4}+\frac{12\!\cdots\!49}{15\!\cdots\!40}a^{3}-\frac{41\!\cdots\!93}{57\!\cdots\!52}a^{2}-\frac{10\!\cdots\!67}{71\!\cdots\!40}a-\frac{45\!\cdots\!71}{14\!\cdots\!88} 1 1 ⋯ 4 0 2 1 ⋯ 3 1 a 1 1 − 2 0 ⋯ 2 8 9 3 ⋯ 8 5 a 1 0 − 5 7 ⋯ 2 0 5 9 ⋯ 8 3 a 9 − 6 0 ⋯ 1 6 2 9 ⋯ 6 9 a 8 + 2 2 ⋯ 0 8 1 1 ⋯ 1 5 a 7 − 2 0 ⋯ 2 8 1 3 ⋯ 8 5 a 6 + 7 1 ⋯ 4 0 9 6 ⋯ 3 7 a 5 + 5 7 ⋯ 5 2 2 1 ⋯ 5 1 a 4 + 1 5 ⋯ 4 0 1 2 ⋯ 4 9 a 3 − 5 7 ⋯ 5 2 4 1 ⋯ 9 3 a 2 − 7 1 ⋯ 4 0 1 0 ⋯ 6 7 a − 1 4 ⋯ 8 8 4 5 ⋯ 7 1 , 70 ⋯ 23 28 ⋯ 60 a 11 − 33 ⋯ 03 51 ⋯ 20 a 10 + 10 ⋯ 69 57 ⋯ 20 a 9 − 78 ⋯ 73 75 ⋯ 52 a 8 + 17 ⋯ 97 28 ⋯ 76 a 7 − 10 ⋯ 23 51 ⋯ 20 a 6 + 52 ⋯ 37 57 ⋯ 20 a 5 − 36 ⋯ 81 28 ⋯ 60 a 4 + 24 ⋯ 91 18 ⋯ 80 a 3 − 20 ⋯ 29 28 ⋯ 76 a 2 + 59 ⋯ 07 14 ⋯ 80 a − 30 ⋯ 09 71 ⋯ 40 \frac{70\!\cdots\!23}{28\!\cdots\!60}a^{11}-\frac{33\!\cdots\!03}{51\!\cdots\!20}a^{10}+\frac{10\!\cdots\!69}{57\!\cdots\!20}a^{9}-\frac{78\!\cdots\!73}{75\!\cdots\!52}a^{8}+\frac{17\!\cdots\!97}{28\!\cdots\!76}a^{7}-\frac{10\!\cdots\!23}{51\!\cdots\!20}a^{6}+\frac{52\!\cdots\!37}{57\!\cdots\!20}a^{5}-\frac{36\!\cdots\!81}{28\!\cdots\!60}a^{4}+\frac{24\!\cdots\!91}{18\!\cdots\!80}a^{3}-\frac{20\!\cdots\!29}{28\!\cdots\!76}a^{2}+\frac{59\!\cdots\!07}{14\!\cdots\!80}a-\frac{30\!\cdots\!09}{71\!\cdots\!40} 2 8 ⋯ 6 0 7 0 ⋯ 2 3 a 1 1 − 5 1 ⋯ 2 0 3 3 ⋯ 0 3 a 1 0 + 5 7 ⋯ 2 0 1 0 ⋯ 6 9 a 9 − 7 5 ⋯ 5 2 7 8 ⋯ 7 3 a 8 + 2 8 ⋯ 7 6 1 7 ⋯ 9 7 a 7 − 5 1 ⋯ 2 0 1 0 ⋯ 2 3 a 6 + 5 7 ⋯ 2 0 5 2 ⋯ 3 7 a 5 − 2 8 ⋯ 6 0 3 6 ⋯ 8 1 a 4 + 1 8 ⋯ 8 0 2 4 ⋯ 9 1 a 3 − 2 8 ⋯ 7 6 2 0 ⋯ 2 9 a 2 + 1 4 ⋯ 8 0 5 9 ⋯ 0 7 a − 7 1 ⋯ 4 0 3 0 ⋯ 0 9
(assuming GRH )
sage: UK.fundamental_units()
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
Regulator : 79246391.31530055 79246391.31530055 7 9 2 4 6 3 9 1 . 3 1 5 3 0 0 5 5
(assuming GRH )
lim s → 1 ( s − 1 ) ζ K ( s ) = ( 2 r 1 ⋅ ( 2 π ) r 2 ⋅ R ⋅ h w ⋅ ∣ D ∣ ≈ ( 2 2 ⋅ ( 2 π ) 5 ⋅ 79246391.31530055 ⋅ 2 2 ⋅ 9621842244611119611904 ≈ ( 31.6453360337721
\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 79246391.31530055 \cdot 2}{2\cdot\sqrt{9621842244611119611904}}\cr\approx \mathstrut & 31.6453360337721
\end{aligned} s → 1 lim ( s − 1 ) ζ K ( s ) = ( ≈ ( ≈ ( w ⋅ ∣ D ∣ 2 r 1 ⋅ ( 2 π ) r 2 ⋅ R ⋅ h 2 ⋅ 9 6 2 1 8 4 2 2 4 4 6 1 1 1 1 9 6 1 1 9 0 4 2 2 ⋅ ( 2 π ) 5 ⋅ 7 9 2 4 6 3 9 1 . 3 1 5 3 0 0 5 5 ⋅ 2 3 1 . 6 4 5 3 3 6 0 3 3 7 7 2 1
(assuming GRH )
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
/* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
# self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 5*x^10 - 16*x^9 + 139*x^8 - 620*x^7 + 9067*x^6 + 12152*x^5 + 29456*x^4 + 238584*x^3 - 142428*x^2 - 88432*x - 936752);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
D 12 D_{12} D 1 2 (as 12T12 ):
sage: K.galois_group(type='pari')
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
p p p
2 2 2
3 3 3
5 5 5
7 7 7
11 11 1 1
13 13 1 3
17 17 1 7
19 19 1 9
23 23 2 3
29 29 2 9
31 31 3 1
37 37 3 7
41 41 4 1
43 43 4 3
47 47 4 7
53 53 5 3
59 59 5 9
Cycle type
R
12 {\href{/padicField/3.12.0.1}{12} } 1 2
2 6 {\href{/padicField/5.2.0.1}{2} }^{6} 2 6
12 {\href{/padicField/7.12.0.1}{12} } 1 2
2 6 {\href{/padicField/11.2.0.1}{2} }^{6} 2 6
3 4 {\href{/padicField/13.3.0.1}{3} }^{4} 3 4
R
R
12 {\href{/padicField/23.12.0.1}{12} } 1 2
12 {\href{/padicField/29.12.0.1}{12} } 1 2
2 6 {\href{/padicField/31.2.0.1}{2} }^{6} 2 6
4 3 {\href{/padicField/37.4.0.1}{4} }^{3} 4 3
2 6 {\href{/padicField/41.2.0.1}{2} }^{6} 2 6
2 5 , 1 2 {\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2} 2 5 , 1 2
2 6 {\href{/padicField/47.2.0.1}{2} }^{6} 2 6
3 4 {\href{/padicField/53.3.0.1}{3} }^{4} 3 4
6 2 {\href{/padicField/59.6.0.1}{6} }^{2} 6 2
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
# to obtain a list of
[ e i , f i ] [e_i,f_i] [ e i , f i ] for the factorization of the ideal
p O K p\mathcal{O}_K p O K for
p = 7 p=7 p = 7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
\\ to obtain a list of
[ e i , f i ] [e_i,f_i] [ e i , f i ] for the factorization of the ideal
p O K p\mathcal{O}_K p O K for
p = 7 p=7 p = 7 in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
// to obtain a list of
[ e i , f i ] [e_i,f_i] [ e i , f i ] for the factorization of the ideal
p O K p\mathcal{O}_K p O K for $p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
# to obtain a list of
[ e i , f i ] [e_i,f_i] [ e i , f i ] for the factorization of the ideal
p O K p\mathcal{O}_K p O K for
p = 7 p=7 p = 7 in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.
(0) (0) (2) (3) (5) (7) (11) (13) (17) (19) (23) (29) (31) (37) (41) (43) (47) (53) (59)