Properties

Label 12.6.122023936000000.1
Degree 1212
Signature [6,3][6, 3]
Discriminant 1.220×1014-1.220\times 10^{14}
Root discriminant 14.9214.92
Ramified primes 2,5,312,5,31
Class number 11
Class group trivial
Galois group S3C22S_3\wr C_2^2 (as 12T261)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1)
 
Copy content gp:K = bnfinit(y^12 - 2*y^10 - 4*y^9 - 9*y^8 + 2*y^7 + 20*y^6 + 22*y^5 + 13*y^4 - 2*y^3 - 9*y^2 - 6*y - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1)
 

x122x104x99x8+2x7+20x6+22x5+13x42x39x26x1 x^{12} - 2x^{10} - 4x^{9} - 9x^{8} + 2x^{7} + 20x^{6} + 22x^{5} + 13x^{4} - 2x^{3} - 9x^{2} - 6x - 1 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  1212
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [6,3][6, 3]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   122023936000000-122023936000000 =21856313\medspace = -\,2^{18}\cdot 5^{6}\cdot 31^{3} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  14.9214.92
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  23/251/2315/6110.619427678828322^{3/2}5^{1/2}31^{5/6}\approx 110.61942767882832
Ramified primes:   22, 55, 3131 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(31)\Q(\sqrt{-31})
Aut(K/Q)\Aut(K/\Q):   C1C_1
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, 15a10+25a9+15a8+15a7+25a625a425a3+15a2+25a15\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{1}{5}, 1325a11+21325a10146325a9365a8+66325a7+153325a6+113325a5+2465a4+128325a344325a2+107325a+96325\frac{1}{325}a^{11}+\frac{21}{325}a^{10}-\frac{146}{325}a^{9}-\frac{3}{65}a^{8}+\frac{66}{325}a^{7}+\frac{153}{325}a^{6}+\frac{113}{325}a^{5}+\frac{24}{65}a^{4}+\frac{128}{325}a^{3}-\frac{44}{325}a^{2}+\frac{107}{325}a+\frac{96}{325} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order 11
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  88
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   2265a111965a101465a99665a813465a7+12965a6+27665a5+41765a4+13865a314965a216865a7265\frac{22}{65}a^{11}-\frac{19}{65}a^{10}-\frac{14}{65}a^{9}-\frac{96}{65}a^{8}-\frac{134}{65}a^{7}+\frac{129}{65}a^{6}+\frac{276}{65}a^{5}+\frac{417}{65}a^{4}+\frac{138}{65}a^{3}-\frac{149}{65}a^{2}-\frac{168}{65}a-\frac{72}{65}, aa, 226325a11129325a10496325a99365a81659325a7+1753325a6+4088325a5+28965a4+653325a31819325a21168325a79325\frac{226}{325}a^{11}-\frac{129}{325}a^{10}-\frac{496}{325}a^{9}-\frac{93}{65}a^{8}-\frac{1659}{325}a^{7}+\frac{1753}{325}a^{6}+\frac{4088}{325}a^{5}+\frac{289}{65}a^{4}+\frac{653}{325}a^{3}-\frac{1819}{325}a^{2}-\frac{1168}{325}a-\frac{79}{325}, 236325a11179325a10201325a93513a81584325a7+1138325a6+2943325a5+69865a4+2128325a3+81325a21268325a484325\frac{236}{325}a^{11}-\frac{179}{325}a^{10}-\frac{201}{325}a^{9}-\frac{35}{13}a^{8}-\frac{1584}{325}a^{7}+\frac{1138}{325}a^{6}+\frac{2943}{325}a^{5}+\frac{698}{65}a^{4}+\frac{2128}{325}a^{3}+\frac{81}{325}a^{2}-\frac{1268}{325}a-\frac{484}{325}, 212325a11293325a10142325a91813a81153325a7+2146325a6+1856325a5+9665a4+876325a31073325a2456325a+72325\frac{212}{325}a^{11}-\frac{293}{325}a^{10}-\frac{142}{325}a^{9}-\frac{18}{13}a^{8}-\frac{1153}{325}a^{7}+\frac{2146}{325}a^{6}+\frac{1856}{325}a^{5}+\frac{96}{65}a^{4}+\frac{876}{325}a^{3}-\frac{1073}{325}a^{2}-\frac{456}{325}a+\frac{72}{325}, 141325a1129325a10241325a911165a81159325a7+318325a6+2608325a5+11013a4+1603325a3+231325a2968325a374325\frac{141}{325}a^{11}-\frac{29}{325}a^{10}-\frac{241}{325}a^{9}-\frac{111}{65}a^{8}-\frac{1159}{325}a^{7}+\frac{318}{325}a^{6}+\frac{2608}{325}a^{5}+\frac{110}{13}a^{4}+\frac{1603}{325}a^{3}+\frac{231}{325}a^{2}-\frac{968}{325}a-\frac{374}{325}, 357325a11498325a10187325a94013a81658325a7+3531325a6+3291325a5+39165a464325a32253325a21191325a+17325\frac{357}{325}a^{11}-\frac{498}{325}a^{10}-\frac{187}{325}a^{9}-\frac{40}{13}a^{8}-\frac{1658}{325}a^{7}+\frac{3531}{325}a^{6}+\frac{3291}{325}a^{5}+\frac{391}{65}a^{4}-\frac{64}{325}a^{3}-\frac{2253}{325}a^{2}-\frac{1191}{325}a+\frac{17}{325}, 925a111125a101425a925a85625a7+10225a6+11725a545a4+2725a37125a23725a+1425\frac{9}{25}a^{11}-\frac{11}{25}a^{10}-\frac{14}{25}a^{9}-\frac{2}{5}a^{8}-\frac{56}{25}a^{7}+\frac{102}{25}a^{6}+\frac{117}{25}a^{5}-\frac{4}{5}a^{4}+\frac{27}{25}a^{3}-\frac{71}{25}a^{2}-\frac{37}{25}a+\frac{14}{25} Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  280.158137734 280.158137734
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(26(2π)3280.15813773412122023936000000(0.201312299938 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 280.158137734 \cdot 1}{2\cdot\sqrt{122023936000000}}\cr\approx \mathstrut & 0.201312299938 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S3C22S_3\wr C_2^2 (as 12T261):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 5184
The 45 conjugacy class representatives for S3C22S_3\wr C_2^2
Character table for S3C22S_3\wr C_2^2

Intermediate fields

Q(5)\Q(\sqrt{5}) , Q(2)\Q(\sqrt{2}) , Q(10)\Q(\sqrt{10}) , Q(2,5)\Q(\sqrt{2}, \sqrt{5})

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 6,4,2{\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} } R 42,22{\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2} 4,24{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4} 4,24{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{4} 6,4,2{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} } 42,22{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2} 6,4,2{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} } 6,4,2{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} } R 6,4,2{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} } 32,22,12{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2} 6,4,2{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} } 42,22{\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2} 6,4,2{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} } 6,23{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.6.2.18a1.17x12+2x10+2x9+x8+4x7+7x6+2x5+8x4+6x3+x2+6x+7x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 7 x^{6} + 2 x^{5} + 8 x^{4} + 6 x^{3} + x^{2} + 6 x + 722661818C6×C2C_6\times C_2[3]6[3]^{6}
55 Copy content Toggle raw display 5.2.2.2a1.2x4+8x3+20x2+16x+9x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9222222C22C_2^2[ ]22[\ ]_{2}^{2}
5.4.2.4a1.2x8+8x6+8x5+20x4+32x3+32x2+16x+9x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9224444C4×C2C_4\times C_2[ ]24[\ ]_{2}^{4}
3131 Copy content Toggle raw display Q31\Q_{31}x+28x + 28111100Trivial[ ][\ ]
Q31\Q_{31}x+28x + 28111100Trivial[ ][\ ]
Q31\Q_{31}x+28x + 28111100Trivial[ ][\ ]
31.1.2.1a1.1x2+31x^{2} + 31221111C2C_2[ ]2[\ ]_{2}
31.2.1.0a1.1x2+29x+3x^{2} + 29 x + 3112200C2C_2[ ]2[\ ]^{2}
31.2.1.0a1.1x2+29x+3x^{2} + 29 x + 3112200C2C_2[ ]2[\ ]^{2}
31.1.3.2a1.3x3+279x^{3} + 279331122C3C_3[ ]3[\ ]_{3}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)