Properties

Label 12.6.122023936000000.1
Degree $12$
Signature $[6, 3]$
Discriminant $-1.220\times 10^{14}$
Root discriminant \(14.92\)
Ramified primes $2,5,31$
Class number $1$
Class group trivial
Galois group $S_3\wr C_2^2$ (as 12T261)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1)
 
gp: K = bnfinit(y^12 - 2*y^10 - 4*y^9 - 9*y^8 + 2*y^7 + 20*y^6 + 22*y^5 + 13*y^4 - 2*y^3 - 9*y^2 - 6*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1)
 

\( x^{12} - 2x^{10} - 4x^{9} - 9x^{8} + 2x^{7} + 20x^{6} + 22x^{5} + 13x^{4} - 2x^{3} - 9x^{2} - 6x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-122023936000000\) \(\medspace = -\,2^{18}\cdot 5^{6}\cdot 31^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(14.92\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{1/2}31^{5/6}\approx 110.61942767882832$
Ramified primes:   \(2\), \(5\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-31}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{325}a^{11}+\frac{21}{325}a^{10}-\frac{146}{325}a^{9}-\frac{3}{65}a^{8}+\frac{66}{325}a^{7}+\frac{153}{325}a^{6}+\frac{113}{325}a^{5}+\frac{24}{65}a^{4}+\frac{128}{325}a^{3}-\frac{44}{325}a^{2}+\frac{107}{325}a+\frac{96}{325}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{22}{65}a^{11}-\frac{19}{65}a^{10}-\frac{14}{65}a^{9}-\frac{96}{65}a^{8}-\frac{134}{65}a^{7}+\frac{129}{65}a^{6}+\frac{276}{65}a^{5}+\frac{417}{65}a^{4}+\frac{138}{65}a^{3}-\frac{149}{65}a^{2}-\frac{168}{65}a-\frac{72}{65}$, $a$, $\frac{226}{325}a^{11}-\frac{129}{325}a^{10}-\frac{496}{325}a^{9}-\frac{93}{65}a^{8}-\frac{1659}{325}a^{7}+\frac{1753}{325}a^{6}+\frac{4088}{325}a^{5}+\frac{289}{65}a^{4}+\frac{653}{325}a^{3}-\frac{1819}{325}a^{2}-\frac{1168}{325}a-\frac{79}{325}$, $\frac{236}{325}a^{11}-\frac{179}{325}a^{10}-\frac{201}{325}a^{9}-\frac{35}{13}a^{8}-\frac{1584}{325}a^{7}+\frac{1138}{325}a^{6}+\frac{2943}{325}a^{5}+\frac{698}{65}a^{4}+\frac{2128}{325}a^{3}+\frac{81}{325}a^{2}-\frac{1268}{325}a-\frac{484}{325}$, $\frac{212}{325}a^{11}-\frac{293}{325}a^{10}-\frac{142}{325}a^{9}-\frac{18}{13}a^{8}-\frac{1153}{325}a^{7}+\frac{2146}{325}a^{6}+\frac{1856}{325}a^{5}+\frac{96}{65}a^{4}+\frac{876}{325}a^{3}-\frac{1073}{325}a^{2}-\frac{456}{325}a+\frac{72}{325}$, $\frac{141}{325}a^{11}-\frac{29}{325}a^{10}-\frac{241}{325}a^{9}-\frac{111}{65}a^{8}-\frac{1159}{325}a^{7}+\frac{318}{325}a^{6}+\frac{2608}{325}a^{5}+\frac{110}{13}a^{4}+\frac{1603}{325}a^{3}+\frac{231}{325}a^{2}-\frac{968}{325}a-\frac{374}{325}$, $\frac{357}{325}a^{11}-\frac{498}{325}a^{10}-\frac{187}{325}a^{9}-\frac{40}{13}a^{8}-\frac{1658}{325}a^{7}+\frac{3531}{325}a^{6}+\frac{3291}{325}a^{5}+\frac{391}{65}a^{4}-\frac{64}{325}a^{3}-\frac{2253}{325}a^{2}-\frac{1191}{325}a+\frac{17}{325}$, $\frac{9}{25}a^{11}-\frac{11}{25}a^{10}-\frac{14}{25}a^{9}-\frac{2}{5}a^{8}-\frac{56}{25}a^{7}+\frac{102}{25}a^{6}+\frac{117}{25}a^{5}-\frac{4}{5}a^{4}+\frac{27}{25}a^{3}-\frac{71}{25}a^{2}-\frac{37}{25}a+\frac{14}{25}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 280.158137734 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 280.158137734 \cdot 1}{2\cdot\sqrt{122023936000000}}\cr\approx \mathstrut & 0.201312299938 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^10 - 4*x^9 - 9*x^8 + 2*x^7 + 20*x^6 + 22*x^5 + 13*x^4 - 2*x^3 - 9*x^2 - 6*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\wr C_2^2$ (as 12T261):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 5184
The 45 conjugacy class representatives for $S_3\wr C_2^2$
Character table for $S_3\wr C_2^2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ R ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ R ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.18.23$x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
\(5\) Copy content Toggle raw display 5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.3.2.3$x^{3} + 155$$3$$1$$2$$C_3$$[\ ]_{3}$