Normalized defining polynomial
\( x^{12} - 4x^{9} - 5x^{8} + 6x^{6} + 10x^{5} + 5x^{4} - 4x^{3} - 5x^{2} + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-158072000000000\) \(\medspace = -\,2^{12}\cdot 5^{9}\cdot 19759\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(15.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{3/4}19759^{1/2}\approx 940.0262460954837$ | ||
Ramified primes: | \(2\), \(5\), \(19759\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-98795}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $a^{10}-4a^{7}-5a^{6}+5a^{4}+10a^{3}+5a^{2}-2a-2$, $a^{11}-a^{10}+a^{9}-5a^{8}+6a^{5}+5a^{4}-4a^{2}-3a+1$, $2a^{11}-a^{10}+a^{9}-9a^{8}-5a^{7}+11a^{5}+15a^{4}+5a^{3}-6a^{2}-5a+1$, $a^{10}-a^{9}+a^{8}-5a^{7}+5a^{4}+5a^{3}-2a$, $3a^{11}-a^{10}+a^{9}-12a^{8}-11a^{7}+a^{6}+13a^{5}+24a^{4}+11a^{3}-8a^{2}-6a+1$, $2a^{11}-a^{10}+a^{9}-9a^{8}-5a^{7}+11a^{5}+15a^{4}+5a^{3}-6a^{2}-5a$, $a^{10}-4a^{7}-5a^{6}-a^{5}+6a^{4}+9a^{3}+7a^{2}-2a-4$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 356.187361644 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 356.187361644 \cdot 1}{2\cdot\sqrt{158072000000000}}\cr\approx \mathstrut & 0.224874709286 \end{aligned}\]
Galois group
$S_3\wr C_4$ (as 12T264):
A solvable group of order 5184 |
The 36 conjugacy class representatives for $S_3\wr C_4$ |
Character table for $S_3\wr C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.9642838578098750000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(5\) | 5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.8.6.1 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
\(19759\) | $\Q_{19759}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19759}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{19759}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{19759}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |