Properties

Label 12.6.158072000000000.1
Degree 1212
Signature [6,3][6, 3]
Discriminant 1.581×1014-1.581\times 10^{14}
Root discriminant 15.2515.25
Ramified primes 2,5,197592,5,19759
Class number 11
Class group trivial
Galois group S3C4S_3\wr C_4 (as 12T264)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1)
 
gp: K = bnfinit(y^12 - 4*y^9 - 5*y^8 + 6*y^6 + 10*y^5 + 5*y^4 - 4*y^3 - 5*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1)
 

x124x95x8+6x6+10x5+5x44x35x2+1 x^{12} - 4x^{9} - 5x^{8} + 6x^{6} + 10x^{5} + 5x^{4} - 4x^{3} - 5x^{2} + 1 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  1212
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [6,3][6, 3]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   158072000000000-158072000000000 =2125919759\medspace = -\,2^{12}\cdot 5^{9}\cdot 19759 Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  15.2515.25
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  253/4197591/2940.02624609548372\cdot 5^{3/4}19759^{1/2}\approx 940.0262460954837
Ramified primes:   22, 55, 1975919759 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(98795)\Q(\sqrt{-98795})
Aut(K/Q)\Aut(K/\Q):   C1C_1
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, a10a^{10}, a11a^{11} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  11
Inessential primes:  None

Class group and class number

Trivial group, which has order 11

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  88
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   aa, a104a75a6+5a4+10a3+5a22a2a^{10}-4a^{7}-5a^{6}+5a^{4}+10a^{3}+5a^{2}-2a-2, a11a10+a95a8+6a5+5a44a23a+1a^{11}-a^{10}+a^{9}-5a^{8}+6a^{5}+5a^{4}-4a^{2}-3a+1, 2a11a10+a99a85a7+11a5+15a4+5a36a25a+12a^{11}-a^{10}+a^{9}-9a^{8}-5a^{7}+11a^{5}+15a^{4}+5a^{3}-6a^{2}-5a+1, a10a9+a85a7+5a4+5a32aa^{10}-a^{9}+a^{8}-5a^{7}+5a^{4}+5a^{3}-2a, 3a11a10+a912a811a7+a6+13a5+24a4+11a38a26a+13a^{11}-a^{10}+a^{9}-12a^{8}-11a^{7}+a^{6}+13a^{5}+24a^{4}+11a^{3}-8a^{2}-6a+1, 2a11a10+a99a85a7+11a5+15a4+5a36a25a2a^{11}-a^{10}+a^{9}-9a^{8}-5a^{7}+11a^{5}+15a^{4}+5a^{3}-6a^{2}-5a, a104a75a6a5+6a4+9a3+7a22a4a^{10}-4a^{7}-5a^{6}-a^{5}+6a^{4}+9a^{3}+7a^{2}-2a-4 Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  356.187361644 356.187361644
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(26(2π)3356.18736164412158072000000000(0.224874709286 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 356.187361644 \cdot 1}{2\cdot\sqrt{158072000000000}}\cr\approx \mathstrut & 0.224874709286 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^9 - 5*x^8 + 6*x^6 + 10*x^5 + 5*x^4 - 4*x^3 - 5*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S3C4S_3\wr C_4 (as 12T264):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 5184
The 36 conjugacy class representatives for S3C4S_3\wr C_4
Character table for S3C4S_3\wr C_4

Intermediate fields

Q(5)\Q(\sqrt{5}) , Q(ζ20)+\Q(\zeta_{20})^+

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 sibling: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.2.9642838578098750000.1

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 8,4{\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} } R 43{\href{/padicField/7.4.0.1}{4} }^{3} 6,4,2{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} } 12{\href{/padicField/13.12.0.1}{12} } 8,4{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} } 32,22,12{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2} 8,4{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} } 6,4,2{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} } 62{\href{/padicField/31.6.0.1}{6} }^{2} 43{\href{/padicField/37.4.0.1}{4} }^{3} 3,23,13{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3} 43{\href{/padicField/43.4.0.1}{4} }^{3} 12{\href{/padicField/47.12.0.1}{12} } 43{\href{/padicField/53.4.0.1}{4} }^{3} 3,23,13{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.6.2.12a1.2x12+2x10+2x9+x8+4x7+5x6+2x5+6x4+8x3+x2+4x+5x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 5 x^{6} + 2 x^{5} + 6 x^{4} + 8 x^{3} + x^{2} + 4 x + 522661212C12C_{12}[2]6[2]^{6}
55 Copy content Toggle raw display 5.1.4.3a1.1x4+5x^{4} + 5441133C4C_4[ ]4[\ ]_{4}
5.2.4.6a1.2x8+16x7+104x6+352x5+664x4+704x3+416x2+128x+21x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21442266C4×C2C_4\times C_2[ ]42[\ ]_{4}^{2}
1975919759 Copy content Toggle raw display Q19759\Q_{19759}xx111100Trivial[ ][\ ]
Q19759\Q_{19759}xx111100Trivial[ ][\ ]
Q19759\Q_{19759}xx111100Trivial[ ][\ ]
Q19759\Q_{19759}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 33113300C3C_3[ ]3[\ ]^{3}
Deg 33113300C3C_3[ ]3[\ ]^{3}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)