Properties

Label 14.0.107...360.1
Degree 1414
Signature [0,7][0, 7]
Discriminant 1.077×1027-1.077\times 10^{27}
Root discriminant 85.2885.28
Ramified primes see page
Class number 11 (GRH)
Class group trivial (GRH)
Galois group S14S_{14} (as 14T63)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x + 7)
 
gp: K = bnfinit(y^14 - 2*y + 7, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 2*x + 7);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 - 2*x + 7)
 

x142x+7 x^{14} - 2x + 7 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  1414
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [0,7][0, 7]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   1076631340001839899398799360-1076631340001839899398799360 =2153522956591690248843237413\medspace = -\,2^{15}\cdot 3\cdot 5\cdot 229\cdot 5659\cdot 1690248843237413 Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  85.2885.28
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  29/431/251/22291/256591/216902488432374131/2862235761920.16262^{9/4}3^{1/2}5^{1/2}229^{1/2}5659^{1/2}1690248843237413^{1/2}\approx 862235761920.1626
Ramified primes:   22, 33, 55, 229229, 56595659, 16902488432374131690248843237413 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(65712 ⁣ ⁣47290\Q(\sqrt{-65712\!\cdots\!47290})
Aut(K/Q)\Aut(K/\Q):   C1C_1
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, a10a^{10}, a11a^{11}, a12a^{12}, a13a^{13} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  11
Inessential primes:  None

Class group and class number

Trivial group, which has order 11 (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  66
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   6a137a12+18a11+21a1040a922a8+35a73a6+8a5+51a474a380a2+107a+296a^{13}-7a^{12}+18a^{11}+21a^{10}-40a^{9}-22a^{8}+35a^{7}-3a^{6}+8a^{5}+51a^{4}-74a^{3}-80a^{2}+107a+29, 65a13+162a12+202a11+166a10+33a9158a8308a7363a6260a5+11a4+342a3+594a2+632a+26365a^{13}+162a^{12}+202a^{11}+166a^{10}+33a^{9}-158a^{8}-308a^{7}-363a^{6}-260a^{5}+11a^{4}+342a^{3}+594a^{2}+632a+263, 13a1310a12+6a1137a10+3a953a8+15a751a6+25a549a456a262a5713a^{13}-10a^{12}+6a^{11}-37a^{10}+3a^{9}-53a^{8}+15a^{7}-51a^{6}+25a^{5}-49a^{4}-56a^{2}-62a-57, 359a13+574a12+520a11+508a10+756a9+607a8+374a7+617a6+343a5257a440a3370a21460a1948359a^{13}+574a^{12}+520a^{11}+508a^{10}+756a^{9}+607a^{8}+374a^{7}+617a^{6}+343a^{5}-257a^{4}-40a^{3}-370a^{2}-1460a-1948, 16a13+22a1252a11+109a10184a9+238a8311a7+409a6448a5+490a4554a3+495a2415a+30616a^{13}+22a^{12}-52a^{11}+109a^{10}-184a^{9}+238a^{8}-311a^{7}+409a^{6}-448a^{5}+490a^{4}-554a^{3}+495a^{2}-415a+306, 81a13+15a1294a11129a1028a9+126a8+165a7+19a6169a5169a4+65a3+288a2+190a38981a^{13}+15a^{12}-94a^{11}-129a^{10}-28a^{9}+126a^{8}+165a^{7}+19a^{6}-169a^{5}-169a^{4}+65a^{3}+288a^{2}+190a-389 Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  327117591.886 327117591.886 (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)7327117591.886121076631340001839899398799360(1.92707880328 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 327117591.886 \cdot 1}{2\cdot\sqrt{1076631340001839899398799360}}\cr\approx \mathstrut & 1.92707880328 \end{aligned} (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x + 7)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - 2*x + 7, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 2*x + 7);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 2*x + 7);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S14S_{14} (as 14T63):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 87178291200
The 135 conjugacy class representatives for S14S_{14}
Character table for S14S_{14}

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q\Q.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R R R 12,12{\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2} 6,5,3{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} } 14{\href{/padicField/13.14.0.1}{14} } 11,3{\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.3.0.1}{3} } 11,2,1{\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} } 10,3,1{\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} } 8,4,12{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2} 12,12{\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2} 14{\href{/padicField/37.14.0.1}{14} } 14{\href{/padicField/41.14.0.1}{14} } 12,12{\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2} 8,22,12{\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2} 10,4{\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.4.0.1}{4} } 8,22,12{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.1.2.3a1.1x2+2x^{2} + 2221133C2C_2[3][3]
2.3.2.6a3.2x6+4x4+4x3+7x2+6x+5x^{6} + 4 x^{4} + 4 x^{3} + 7 x^{2} + 6 x + 5223366A4×C2A_4\times C_2[2,2]6[2, 2]^{6}
2.3.2.6a3.1x6+4x4+4x3+3x2+6x+5x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 6 x + 5223366A4A_4[2,2]3[2, 2]^{3}
33 Copy content Toggle raw display 3.1.2.1a1.2x2+6x^{2} + 6221111C2C_2[ ]2[\ ]_{2}
3.2.1.0a1.1x2+2x+2x^{2} + 2 x + 2112200C2C_2[ ]2[\ ]^{2}
3.10.1.0a1.1x10+2x6+2x5+2x4+x+2x^{10} + 2 x^{6} + 2 x^{5} + 2 x^{4} + x + 211101000C10C_{10}[ ]10[\ ]^{10}
55 Copy content Toggle raw display Q5\Q_{5}x+3x + 3111100Trivial[ ][\ ]
5.1.2.1a1.1x2+5x^{2} + 5221111C2C_2[ ]2[\ ]_{2}
5.2.1.0a1.1x2+4x+2x^{2} + 4 x + 2112200C2C_2[ ]2[\ ]^{2}
5.9.1.0a1.1x9+2x3+x+3x^{9} + 2 x^{3} + x + 3119900C9C_9[ ]9[\ ]^{9}
229229 Copy content Toggle raw display Q229\Q_{229}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 55115500C5C_5[ ]5[\ ]^{5}
Deg 66116600C6C_6[ ]6[\ ]^{6}
56595659 Copy content Toggle raw display Q5659\Q_{5659}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 33113300C3C_3[ ]3[\ ]^{3}
Deg 33113300C3C_3[ ]3[\ ]^{3}
Deg 55115500C5C_5[ ]5[\ ]^{5}
16902488432374131690248843237413 Copy content Toggle raw display Q1690248843237413\Q_{1690248843237413}xx111100Trivial[ ][\ ]
Q1690248843237413\Q_{1690248843237413}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 44114400C4C_4[ ]4[\ ]^{4}
Deg 66116600C6C_6[ ]6[\ ]^{6}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)