Normalized defining polynomial
\( x^{14} - 2x + 7 \)
Invariants
Degree: | $14$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-1076631340001839899398799360\) \(\medspace = -\,2^{15}\cdot 3\cdot 5\cdot 229\cdot 5659\cdot 1690248843237413\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(85.28\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{9/4}3^{1/2}5^{1/2}229^{1/2}5659^{1/2}1690248843237413^{1/2}\approx 862235761920.1626$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(229\), \(5659\), \(1690248843237413\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-65712\!\cdots\!47290}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $6a^{13}-7a^{12}+18a^{11}+21a^{10}-40a^{9}-22a^{8}+35a^{7}-3a^{6}+8a^{5}+51a^{4}-74a^{3}-80a^{2}+107a+29$, $65a^{13}+162a^{12}+202a^{11}+166a^{10}+33a^{9}-158a^{8}-308a^{7}-363a^{6}-260a^{5}+11a^{4}+342a^{3}+594a^{2}+632a+263$, $13a^{13}-10a^{12}+6a^{11}-37a^{10}+3a^{9}-53a^{8}+15a^{7}-51a^{6}+25a^{5}-49a^{4}-56a^{2}-62a-57$, $359a^{13}+574a^{12}+520a^{11}+508a^{10}+756a^{9}+607a^{8}+374a^{7}+617a^{6}+343a^{5}-257a^{4}-40a^{3}-370a^{2}-1460a-1948$, $16a^{13}+22a^{12}-52a^{11}+109a^{10}-184a^{9}+238a^{8}-311a^{7}+409a^{6}-448a^{5}+490a^{4}-554a^{3}+495a^{2}-415a+306$, $81a^{13}+15a^{12}-94a^{11}-129a^{10}-28a^{9}+126a^{8}+165a^{7}+19a^{6}-169a^{5}-169a^{4}+65a^{3}+288a^{2}+190a-389$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 327117591.886 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 327117591.886 \cdot 1}{2\cdot\sqrt{1076631340001839899398799360}}\cr\approx \mathstrut & 1.92707880328 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 87178291200 |
The 135 conjugacy class representatives for $S_{14}$ |
Character table for $S_{14}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 28 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.6.6.2 | $x^{6} + 6 x^{5} + 14 x^{4} + 24 x^{3} + 44 x^{2} + 8 x + 72$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
2.6.6.1 | $x^{6} + 6 x^{5} + 34 x^{4} + 80 x^{3} + 204 x^{2} + 216 x + 216$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
\(3\) | 3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.2.0.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
3.10.0.1 | $x^{10} + 2 x^{6} + 2 x^{5} + 2 x^{4} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(229\) | $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
\(5659\) | $\Q_{5659}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
\(1690248843237413\) | $\Q_{1690248843237413}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{1690248843237413}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |