Properties

Label 14.0.152...480.1
Degree 1414
Signature [0,7][0, 7]
Discriminant 1.521×1027-1.521\times 10^{27}
Root discriminant 87.4287.42
Ramified primes see page
Class number 11 (GRH)
Class group trivial (GRH)
Galois group S14S_{14} (as 14T63)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^14 - 6*x + 8)
 
Copy content gp:K = bnfinit(y^14 - 6*y + 8, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 6*x + 8);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 - 6*x + 8)
 

x146x+8 x^{14} - 6x + 8 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  1414
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [0,7][0, 7]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   1521288950440017380097044480-1521288950440017380097044480 =21252931039244004924113840013\medspace = -\,2^{12}\cdot 5\cdot 293\cdot 1039\cdot 244004924113840013 Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  87.4287.42
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  212/1351/22931/210391/22440049241138400131/21155579219962.02472^{12/13}5^{1/2}293^{1/2}1039^{1/2}244004924113840013^{1/2}\approx 1155579219962.0247
Ramified primes:   22, 55, 293293, 10391039, 244004924113840013244004924113840013 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(37140 ⁣ ⁣87755\Q(\sqrt{-37140\!\cdots\!87755})
Aut(K/Q)\Aut(K/\Q):   C1C_1
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, a10a^{10}, a11a^{11}, a12a^{12}, 12a13\frac{1}{2}a^{13} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11 (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order 11 (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  66
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   a13a117a10+2a8+27a7+2a6+6a533a413a324a2+38a+9a^{13}-a^{11}-7a^{10}+2a^{8}+27a^{7}+2a^{6}+6a^{5}-33a^{4}-13a^{3}-24a^{2}+38a+9, 5a13+2a127a11a10+3a97a814a719a6+6a525a416a339a2+29a635a^{13}+2a^{12}-7a^{11}-a^{10}+3a^{9}-7a^{8}-14a^{7}-19a^{6}+6a^{5}-25a^{4}-16a^{3}-39a^{2}+29a-63, 71a13+52a12+55a11+75a10+23a9+65a8+20a715a6+54a583a4+7a338a2184a37771a^{13}+52a^{12}+55a^{11}+75a^{10}+23a^{9}+65a^{8}+20a^{7}-15a^{6}+54a^{5}-83a^{4}+7a^{3}-38a^{2}-184a-377, 69a13+925a12971a11421a10+1824a91168a81486a7+3071a6769a53702a4+4631a3+915a27569a+558569a^{13}+925a^{12}-971a^{11}-421a^{10}+1824a^{9}-1168a^{8}-1486a^{7}+3071a^{6}-769a^{5}-3702a^{4}+4631a^{3}+915a^{2}-7569a+5585, 971a13+1069a12169a111471a101319a9+256a8+1833a7+2001a6+175a52771a43883a3340a2+5552a+503971a^{13}+1069a^{12}-169a^{11}-1471a^{10}-1319a^{9}+256a^{8}+1833a^{7}+2001a^{6}+175a^{5}-2771a^{4}-3883a^{3}-340a^{2}+5552a+503, 482a13715a12+592a1180a10720a9+1496a81664a7+876a6+753a52774a4+4112a33516a2+650a+951482a^{13}-715a^{12}+592a^{11}-80a^{10}-720a^{9}+1496a^{8}-1664a^{7}+876a^{6}+753a^{5}-2774a^{4}+4112a^{3}-3516a^{2}+650a+951 Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  951832038.935 951832038.935 (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)7951832038.935121521288950440017380097044480(4.71719192671 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 951832038.935 \cdot 1}{2\cdot\sqrt{1521288950440017380097044480}}\cr\approx \mathstrut & 4.71719192671 \end{aligned} (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^14 - 6*x + 8) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^14 - 6*x + 8, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 6*x + 8); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 6*x + 8); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S14S_{14} (as 14T63):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 87178291200
The 135 conjugacy class representatives for S14S_{14}
Character table for S14S_{14}

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q\Q.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 62,12{\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2} R 12,12{\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2} 72{\href{/padicField/11.7.0.1}{7} }^{2} 12,12{\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2} 11,2,1{\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} } 14{\href{/padicField/19.14.0.1}{14} } 9,3,2{\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} } 11,2,1{\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} } 13,1{\href{/padicField/31.13.0.1}{13} }{,}\,{\href{/padicField/31.1.0.1}{1} } 13,1{\href{/padicField/37.13.0.1}{13} }{,}\,{\href{/padicField/37.1.0.1}{1} } 8,23{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3} 14{\href{/padicField/43.14.0.1}{14} } 4,32,14{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4} 7,4,13{\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3} 5,32,2,1{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display Q2\Q_{2}x+1x + 1111100Trivial[ ][\ ]
2.1.13.12a1.1x13+2x^{13} + 21313111212F13F_{13}[ ]1312[\ ]_{13}^{12}
55 Copy content Toggle raw display Q5\Q_{5}x+3x + 3111100Trivial[ ][\ ]
5.2.1.0a1.1x2+4x+2x^{2} + 4 x + 2112200C2C_2[ ]2[\ ]^{2}
5.1.2.1a1.2x2+10x^{2} + 10221111C2C_2[ ]2[\ ]_{2}
5.9.1.0a1.1x9+2x3+x+3x^{9} + 2 x^{3} + x + 3119900C9C_9[ ]9[\ ]^{9}
293293 Copy content Toggle raw display Deg 22112200C2C_2[ ]2[\ ]^{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 55115500C5C_5[ ]5[\ ]^{5}
Deg 55115500C5C_5[ ]5[\ ]^{5}
10391039 Copy content Toggle raw display Q1039\Q_{1039}xx111100Trivial[ ][\ ]
Deg 22112200C2C_2[ ]2[\ ]^{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 33113300C3C_3[ ]3[\ ]^{3}
Deg 66116600C6C_6[ ]6[\ ]^{6}
244004924113840013244004924113840013 Copy content Toggle raw display Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 121211121200C12C_{12}[ ]12[\ ]^{12}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)