Normalized defining polynomial
\( x^{14} - 8x + 2 \)
Invariants
Degree: | $14$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1332058714818750502393610240\) \(\medspace = 2^{27}\cdot 5\cdot 11\cdot 59\cdot 307\cdot 28081\cdot 354770777\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(86.59\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(5\), \(11\), \(59\), \(307\), \(28081\), \(354770777\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{19849\!\cdots\!46910}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $2a^{12}+2a^{11}-a^{10}-2a^{9}+a^{8}+2a^{7}-3a^{6}-7a^{5}-a^{4}+7a^{3}+3a^{2}-5a+1$, $a^{13}-a^{12}+a^{11}+a^{10}-2a^{9}+3a^{8}-6a^{7}+6a^{6}-6a^{5}+9a^{4}-8a^{3}+9a^{2}-14a+3$, $2a^{13}+5a^{12}+3a^{11}-4a^{10}-10a^{9}-9a^{8}+9a^{6}+7a^{5}-9a^{4}-29a^{3}-33a^{2}-13a+5$, $a^{13}-5a^{12}-5a^{11}+5a^{10}+11a^{9}-5a^{8}-21a^{7}+8a^{6}+31a^{5}-11a^{4}-39a^{3}+11a^{2}+44a-11$, $14a^{13}+20a^{12}+25a^{11}+20a^{10}+31a^{9}+38a^{8}+32a^{7}+46a^{6}+56a^{5}+56a^{4}+63a^{3}+84a^{2}+98a-31$, $8a^{13}-11a^{12}-2a^{11}-2a^{10}-51a^{9}-35a^{8}+29a^{7}-7a^{6}-31a^{5}+19a^{4}-74a^{3}-153a^{2}+29a+3$, $2a^{13}+2a^{12}-17a^{11}-9a^{10}+18a^{9}-6a^{8}-8a^{7}-50a^{6}+49a^{5}-17a^{4}+15a^{3}-112a^{2}+61a-9$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 249718463.726 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 249718463.726 \cdot 1}{2\cdot\sqrt{1332058714818750502393610240}}\cr\approx \mathstrut & 0.841973021757 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 87178291200 |
The 135 conjugacy class representatives for $S_{14}$ |
Character table for $S_{14}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 28 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.14.0.1}{14} }$ | R | ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.14.27.121 | $x^{14} + 6 x^{12} + 4 x^{9} + 4 x^{7} + 4 x^{4} + 6$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(11\) | 11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
11.12.0.1 | $x^{12} + x^{8} + x^{7} + 4 x^{6} + 2 x^{5} + 5 x^{4} + 5 x^{3} + 6 x^{2} + 5 x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
\(59\) | $\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
59.2.1.2 | $x^{2} + 59$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
59.11.0.1 | $x^{11} + 6 x + 57$ | $1$ | $11$ | $0$ | $C_{11}$ | $[\ ]^{11}$ | |
\(307\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
\(28081\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
\(354770777\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ |