Normalized defining polynomial
\( x^{14} - 9x + 3 \)
Invariants
Degree: | $14$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(6928793237157103918561273965\) \(\medspace = 3^{13}\cdot 5\cdot 19\cdot 31\cdot 255053\cdot 5785828481723\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(97.41\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{13/14}5^{1/2}19^{1/2}31^{1/2}255053^{1/2}5785828481723^{1/2}\approx 182844461715.1342$ | ||
Ramified primes: | \(3\), \(5\), \(19\), \(31\), \(255053\), \(5785828481723\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{13037\!\cdots\!78365}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $3a^{13}+4a^{12}+5a^{10}+6a^{9}-6a^{8}-5a^{7}+2a^{6}-16a^{5}-17a^{4}+10a^{3}-6a^{2}-12a+13$, $9a^{13}+2a^{12}-16a^{11}+12a^{10}+16a^{9}-25a^{8}+6a^{7}+34a^{6}-38a^{5}-14a^{4}+74a^{3}-31a^{2}-60a+29$, $30a^{13}+36a^{12}+41a^{11}+49a^{10}+50a^{9}+64a^{8}+65a^{7}+91a^{6}+91a^{5}+122a^{4}+116a^{3}+150a^{2}+156a-70$, $14a^{13}-7a^{12}+3a^{11}+a^{10}-15a^{9}+36a^{8}-50a^{7}+64a^{6}-97a^{5}+128a^{4}-136a^{3}+144a^{2}-171a+43$, $94a^{13}+24a^{12}+15a^{11}-2a^{10}+7a^{9}-3a^{8}-2a^{7}+8a^{6}-16a^{5}+28a^{4}-40a^{3}+47a^{2}-51a-787$, $6a^{13}-21a^{12}+32a^{11}-21a^{10}+a^{9}+39a^{8}-59a^{7}+64a^{6}-13a^{5}-53a^{4}+139a^{3}-156a^{2}+114a-8$, $39a^{13}-22a^{12}+14a^{11}+63a^{10}+7a^{9}-84a^{8}-34a^{7}+99a^{6}+55a^{5}-144a^{4}-126a^{3}+166a^{2}+222a-511$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 586657278.452 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 586657278.452 \cdot 1}{2\cdot\sqrt{6928793237157103918561273965}}\cr\approx \mathstrut & 0.867291056845 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 87178291200 |
The 135 conjugacy class representatives for $S_{14}$ |
Character table for $S_{14}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 28 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.14.13.2 | $x^{14} + 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(19\) | 19.2.1.2 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
19.3.0.1 | $x^{3} + 4 x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
19.9.0.1 | $x^{9} + 11 x^{3} + 14 x^{2} + 16 x + 17$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(31\) | 31.2.1.1 | $x^{2} + 93$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.10.0.1 | $x^{10} + 30 x^{5} + 26 x^{4} + 13 x^{3} + 13 x^{2} + 13 x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
\(255053\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
\(5785828481723\) | $\Q_{5785828481723}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{5785828481723}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{5785828481723}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ |