Normalized defining polynomial
\( x^{14} - 4x - 2 \)
Invariants
Degree: | $14$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(81393446909055011389440\) \(\medspace = 2^{27}\cdot 3\cdot 5\cdot 17\cdot 31\cdot 76714539691\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(43.30\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(3\), \(5\), \(17\), \(31\), \(76714539691\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{12128\!\cdots\!14710}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{13}-a^{4}+a^{3}-5$, $a^{8}+a^{6}+a^{5}+a^{4}+a^{2}-1$, $a^{13}-2a^{12}+2a^{11}-a^{10}+a^{7}-a^{6}-a^{5}+3a^{4}-3a^{3}+a^{2}-1$, $a^{13}-a^{12}+a^{10}-a^{9}+a^{7}-a^{6}+a^{5}-a^{4}+a^{3}-2a-1$, $a^{11}+a^{10}-a^{8}-a^{7}-2a^{4}-2a^{3}+2a^{2}+4a+1$, $2a^{13}+2a^{12}-2a^{10}+2a^{9}+4a^{8}+2a^{7}-3a^{6}+6a^{4}+6a^{3}-2a^{2}-4a-1$, $6a^{13}-a^{12}-2a^{11}+a^{10}+a^{9}-4a^{8}+4a^{7}-3a^{6}-a^{5}+3a^{4}-6a^{3}+4a^{2}-2a-29$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2957011.70752 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 2957011.70752 \cdot 1}{2\cdot\sqrt{81393446909055011389440}}\cr\approx \mathstrut & 1.27546201564 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 87178291200 |
The 135 conjugacy class representatives for $S_{14}$ |
Character table for $S_{14}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 28 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.14.0.1}{14} }$ | R | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.13.0.1}{13} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.14.27.128 | $x^{14} + 4 x^{13} + 4 x^{10} + 4 x^{8} + 4 x^{6} + 4 x + 6$ | $14$ | $1$ | $27$ | 14T44 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7, 3]_{7}^{3}$ |
\(3\) | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.2.0.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
3.10.0.1 | $x^{10} + 2 x^{6} + 2 x^{5} + 2 x^{4} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(17\) | $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.10.0.1 | $x^{10} + 13 x^{5} + 6 x^{4} + 5 x^{3} + 9 x^{2} + 12 x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
\(31\) | 31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
31.2.1.2 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.10.0.1 | $x^{10} + 30 x^{5} + 26 x^{4} + 13 x^{3} + 13 x^{2} + 13 x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
\(76714539691\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |