Properties

Label 16.4.432...025.2
Degree $16$
Signature $[4, 6]$
Discriminant $4.328\times 10^{24}$
Root discriminant \(34.66\)
Ramified primes $3,5,7,53,61$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\wr Q_8.A_4$ (as 16T1811)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7)
 
gp: K = bnfinit(y^16 - 4*y^15 + 10*y^14 - 11*y^13 + 11*y^12 - 147*y^11 + 205*y^10 - 188*y^8 - 988*y^7 + 729*y^6 + 1598*y^5 - 1876*y^4 + 302*y^3 + 325*y^2 - 126*y + 7, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7)
 

\( x^{16} - 4 x^{15} + 10 x^{14} - 11 x^{13} + 11 x^{12} - 147 x^{11} + 205 x^{10} - 188 x^{8} - 988 x^{7} + \cdots + 7 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(4328092617651142144697025\) \(\medspace = 3^{8}\cdot 5^{2}\cdot 7^{2}\cdot 53^{2}\cdot 61^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.66\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{1/2}7^{1/2}53^{1/2}61^{2/3}\approx 1155.985733589208$
Ramified primes:   \(3\), \(5\), \(7\), \(53\), \(61\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{10}a^{14}-\frac{1}{5}a^{13}-\frac{1}{10}a^{12}+\frac{1}{10}a^{11}-\frac{2}{5}a^{9}-\frac{3}{10}a^{8}+\frac{1}{5}a^{7}-\frac{3}{10}a^{6}+\frac{1}{5}a^{5}+\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a+\frac{1}{10}$, $\frac{1}{11\!\cdots\!80}a^{15}-\frac{28\!\cdots\!41}{11\!\cdots\!80}a^{14}+\frac{16\!\cdots\!67}{11\!\cdots\!80}a^{13}+\frac{29\!\cdots\!19}{11\!\cdots\!98}a^{12}+\frac{18\!\cdots\!81}{11\!\cdots\!80}a^{11}-\frac{10\!\cdots\!41}{28\!\cdots\!45}a^{10}+\frac{21\!\cdots\!53}{11\!\cdots\!80}a^{9}-\frac{47\!\cdots\!61}{11\!\cdots\!80}a^{8}+\frac{42\!\cdots\!89}{11\!\cdots\!80}a^{7}+\frac{12\!\cdots\!59}{11\!\cdots\!80}a^{6}+\frac{24\!\cdots\!53}{56\!\cdots\!90}a^{5}-\frac{73\!\cdots\!61}{28\!\cdots\!45}a^{4}+\frac{20\!\cdots\!08}{28\!\cdots\!45}a^{3}+\frac{87\!\cdots\!09}{56\!\cdots\!90}a^{2}+\frac{69\!\cdots\!23}{15\!\cdots\!60}a+\frac{19\!\cdots\!51}{11\!\cdots\!80}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!77}{11\!\cdots\!80}a^{15}-\frac{52\!\cdots\!49}{11\!\cdots\!80}a^{14}+\frac{98\!\cdots\!23}{11\!\cdots\!80}a^{13}+\frac{12\!\cdots\!81}{56\!\cdots\!90}a^{12}+\frac{55\!\cdots\!17}{22\!\cdots\!96}a^{11}-\frac{14\!\cdots\!72}{28\!\cdots\!45}a^{10}-\frac{77\!\cdots\!11}{11\!\cdots\!80}a^{9}+\frac{35\!\cdots\!79}{11\!\cdots\!80}a^{8}+\frac{77\!\cdots\!09}{11\!\cdots\!80}a^{7}-\frac{54\!\cdots\!41}{11\!\cdots\!80}a^{6}-\frac{53\!\cdots\!91}{56\!\cdots\!90}a^{5}-\frac{13\!\cdots\!74}{28\!\cdots\!45}a^{4}+\frac{55\!\cdots\!11}{56\!\cdots\!49}a^{3}+\frac{10\!\cdots\!43}{56\!\cdots\!90}a^{2}-\frac{85\!\cdots\!81}{15\!\cdots\!60}a+\frac{16\!\cdots\!91}{22\!\cdots\!96}$, $\frac{50\!\cdots\!19}{11\!\cdots\!80}a^{15}-\frac{14\!\cdots\!13}{11\!\cdots\!80}a^{14}+\frac{33\!\cdots\!41}{11\!\cdots\!80}a^{13}-\frac{41\!\cdots\!14}{28\!\cdots\!45}a^{12}+\frac{62\!\cdots\!61}{22\!\cdots\!96}a^{11}-\frac{17\!\cdots\!84}{28\!\cdots\!45}a^{10}+\frac{26\!\cdots\!83}{11\!\cdots\!80}a^{9}+\frac{44\!\cdots\!23}{11\!\cdots\!80}a^{8}-\frac{48\!\cdots\!97}{11\!\cdots\!80}a^{7}-\frac{56\!\cdots\!97}{11\!\cdots\!80}a^{6}-\frac{11\!\cdots\!47}{56\!\cdots\!90}a^{5}+\frac{17\!\cdots\!72}{28\!\cdots\!45}a^{4}-\frac{61\!\cdots\!89}{56\!\cdots\!49}a^{3}-\frac{52\!\cdots\!89}{56\!\cdots\!90}a^{2}+\frac{45\!\cdots\!73}{15\!\cdots\!60}a-\frac{20\!\cdots\!65}{22\!\cdots\!96}$, $\frac{86\!\cdots\!09}{11\!\cdots\!80}a^{15}-\frac{16\!\cdots\!13}{11\!\cdots\!80}a^{14}+\frac{30\!\cdots\!71}{11\!\cdots\!80}a^{13}+\frac{16\!\cdots\!17}{56\!\cdots\!90}a^{12}+\frac{45\!\cdots\!41}{22\!\cdots\!96}a^{11}-\frac{28\!\cdots\!29}{28\!\cdots\!45}a^{10}-\frac{80\!\cdots\!27}{11\!\cdots\!80}a^{9}+\frac{12\!\cdots\!83}{11\!\cdots\!80}a^{8}+\frac{66\!\cdots\!73}{11\!\cdots\!80}a^{7}-\frac{10\!\cdots\!57}{11\!\cdots\!80}a^{6}-\frac{70\!\cdots\!27}{56\!\cdots\!90}a^{5}+\frac{20\!\cdots\!17}{28\!\cdots\!45}a^{4}+\frac{57\!\cdots\!53}{56\!\cdots\!49}a^{3}-\frac{20\!\cdots\!69}{56\!\cdots\!90}a^{2}-\frac{37\!\cdots\!97}{15\!\cdots\!60}a+\frac{52\!\cdots\!95}{22\!\cdots\!96}$, $\frac{66\!\cdots\!81}{59\!\cdots\!20}a^{15}-\frac{23\!\cdots\!83}{59\!\cdots\!20}a^{14}+\frac{55\!\cdots\!91}{59\!\cdots\!20}a^{13}-\frac{11\!\cdots\!37}{14\!\cdots\!55}a^{12}+\frac{55\!\cdots\!99}{59\!\cdots\!20}a^{11}-\frac{23\!\cdots\!96}{14\!\cdots\!55}a^{10}+\frac{88\!\cdots\!21}{59\!\cdots\!20}a^{9}+\frac{67\!\cdots\!69}{11\!\cdots\!84}a^{8}-\frac{19\!\cdots\!79}{11\!\cdots\!84}a^{7}-\frac{13\!\cdots\!91}{11\!\cdots\!84}a^{6}+\frac{59\!\cdots\!31}{29\!\cdots\!10}a^{5}+\frac{25\!\cdots\!07}{14\!\cdots\!55}a^{4}-\frac{17\!\cdots\!23}{14\!\cdots\!55}a^{3}-\frac{88\!\cdots\!11}{29\!\cdots\!10}a^{2}+\frac{16\!\cdots\!31}{82\!\cdots\!40}a-\frac{30\!\cdots\!91}{59\!\cdots\!20}$, $\frac{15\!\cdots\!33}{16\!\cdots\!08}a^{15}-\frac{40\!\cdots\!89}{16\!\cdots\!08}a^{14}+\frac{87\!\cdots\!51}{16\!\cdots\!08}a^{13}-\frac{59\!\cdots\!53}{82\!\cdots\!54}a^{12}+\frac{77\!\cdots\!25}{16\!\cdots\!08}a^{11}-\frac{54\!\cdots\!88}{41\!\cdots\!27}a^{10}+\frac{866675753219625}{16\!\cdots\!08}a^{9}+\frac{17\!\cdots\!95}{16\!\cdots\!08}a^{8}-\frac{94\!\cdots\!03}{16\!\cdots\!08}a^{7}-\frac{18\!\cdots\!13}{16\!\cdots\!08}a^{6}-\frac{69\!\cdots\!33}{82\!\cdots\!54}a^{5}+\frac{47\!\cdots\!23}{41\!\cdots\!27}a^{4}+\frac{12\!\cdots\!75}{41\!\cdots\!27}a^{3}-\frac{24\!\cdots\!29}{82\!\cdots\!54}a^{2}-\frac{10\!\cdots\!41}{16\!\cdots\!08}a+\frac{54\!\cdots\!91}{16\!\cdots\!08}$, $\frac{18\!\cdots\!95}{11\!\cdots\!98}a^{15}-\frac{60\!\cdots\!55}{11\!\cdots\!98}a^{14}+\frac{14\!\cdots\!39}{11\!\cdots\!98}a^{13}-\frac{50\!\cdots\!01}{56\!\cdots\!49}a^{12}+\frac{13\!\cdots\!31}{11\!\cdots\!98}a^{11}-\frac{13\!\cdots\!88}{56\!\cdots\!49}a^{10}+\frac{18\!\cdots\!71}{11\!\cdots\!98}a^{9}+\frac{11\!\cdots\!17}{11\!\cdots\!98}a^{8}-\frac{23\!\cdots\!67}{11\!\cdots\!98}a^{7}-\frac{20\!\cdots\!27}{11\!\cdots\!98}a^{6}-\frac{75\!\cdots\!70}{56\!\cdots\!49}a^{5}+\frac{13\!\cdots\!01}{56\!\cdots\!49}a^{4}-\frac{69\!\cdots\!20}{56\!\cdots\!49}a^{3}-\frac{57\!\cdots\!43}{56\!\cdots\!49}a^{2}+\frac{36\!\cdots\!35}{15\!\cdots\!26}a-\frac{61\!\cdots\!83}{11\!\cdots\!98}$, $\frac{39\!\cdots\!25}{22\!\cdots\!96}a^{15}-\frac{11\!\cdots\!69}{22\!\cdots\!96}a^{14}+\frac{24\!\cdots\!79}{22\!\cdots\!96}a^{13}-\frac{47\!\cdots\!73}{11\!\cdots\!98}a^{12}+\frac{22\!\cdots\!53}{22\!\cdots\!96}a^{11}-\frac{13\!\cdots\!99}{56\!\cdots\!49}a^{10}+\frac{13\!\cdots\!77}{22\!\cdots\!96}a^{9}+\frac{37\!\cdots\!71}{22\!\cdots\!96}a^{8}-\frac{32\!\cdots\!71}{22\!\cdots\!96}a^{7}-\frac{44\!\cdots\!81}{22\!\cdots\!96}a^{6}-\frac{11\!\cdots\!77}{11\!\cdots\!98}a^{5}+\frac{12\!\cdots\!34}{56\!\cdots\!49}a^{4}-\frac{50\!\cdots\!15}{56\!\cdots\!49}a^{3}-\frac{47\!\cdots\!85}{11\!\cdots\!98}a^{2}+\frac{11\!\cdots\!07}{31\!\cdots\!52}a-\frac{67\!\cdots\!57}{22\!\cdots\!96}$, $\frac{21\!\cdots\!69}{22\!\cdots\!96}a^{15}-\frac{35\!\cdots\!81}{11\!\cdots\!80}a^{14}+\frac{93\!\cdots\!27}{11\!\cdots\!80}a^{13}-\frac{49\!\cdots\!67}{56\!\cdots\!90}a^{12}+\frac{16\!\cdots\!29}{11\!\cdots\!80}a^{11}-\frac{78\!\cdots\!90}{56\!\cdots\!49}a^{10}+\frac{13\!\cdots\!69}{11\!\cdots\!80}a^{9}-\frac{65\!\cdots\!77}{11\!\cdots\!80}a^{8}-\frac{11\!\cdots\!07}{11\!\cdots\!80}a^{7}-\frac{11\!\cdots\!17}{11\!\cdots\!80}a^{6}-\frac{12\!\cdots\!91}{56\!\cdots\!90}a^{5}+\frac{17\!\cdots\!04}{28\!\cdots\!45}a^{4}-\frac{17\!\cdots\!33}{28\!\cdots\!45}a^{3}+\frac{12\!\cdots\!01}{11\!\cdots\!98}a^{2}-\frac{10\!\cdots\!81}{15\!\cdots\!60}a+\frac{82\!\cdots\!19}{11\!\cdots\!80}$, $\frac{26\!\cdots\!01}{28\!\cdots\!45}a^{15}-\frac{16\!\cdots\!11}{56\!\cdots\!90}a^{14}+\frac{18\!\cdots\!81}{28\!\cdots\!45}a^{13}-\frac{18\!\cdots\!61}{56\!\cdots\!90}a^{12}+\frac{22\!\cdots\!73}{56\!\cdots\!90}a^{11}-\frac{36\!\cdots\!19}{28\!\cdots\!45}a^{10}+\frac{24\!\cdots\!11}{28\!\cdots\!45}a^{9}+\frac{10\!\cdots\!33}{11\!\cdots\!98}a^{8}-\frac{77\!\cdots\!41}{56\!\cdots\!49}a^{7}-\frac{11\!\cdots\!57}{11\!\cdots\!98}a^{6}+\frac{17\!\cdots\!87}{28\!\cdots\!45}a^{5}+\frac{41\!\cdots\!58}{28\!\cdots\!45}a^{4}-\frac{17\!\cdots\!27}{28\!\cdots\!45}a^{3}-\frac{66\!\cdots\!87}{28\!\cdots\!45}a^{2}+\frac{48\!\cdots\!31}{39\!\cdots\!65}a-\frac{38\!\cdots\!87}{56\!\cdots\!90}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2759124.66733 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 2759124.66733 \cdot 1}{2\cdot\sqrt{4328092617651142144697025}}\cr\approx \mathstrut & 0.652818191788 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 4*x^15 + 10*x^14 - 11*x^13 + 11*x^12 - 147*x^11 + 205*x^10 - 188*x^8 - 988*x^7 + 729*x^6 + 1598*x^5 - 1876*x^4 + 302*x^3 + 325*x^2 - 126*x + 7);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr Q_8.A_4$ (as 16T1811):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24576
The 88 conjugacy class representatives for $C_2\wr Q_8.A_4$
Character table for $C_2\wr Q_8.A_4$

Intermediate fields

4.4.33489.1, 8.6.39252959235.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 16.6.347360347513773093841541235.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.3.0.1}{3} }^{2}$ R R R ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ R ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.16.8.1$x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
\(7\) Copy content Toggle raw display 7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
\(53\) Copy content Toggle raw display 53.2.0.1$x^{2} + 49 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
53.2.0.1$x^{2} + 49 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
53.4.2.1$x^{4} + 4974 x^{3} + 6304741 x^{2} + 297375564 x + 18587952$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53.4.0.1$x^{4} + 9 x^{2} + 38 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
53.4.0.1$x^{4} + 9 x^{2} + 38 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(61\) Copy content Toggle raw display $\Q_{61}$$x + 59$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 59$$1$$1$$0$Trivial$[\ ]$
61.2.0.1$x^{2} + 60 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.12.8.1$x^{12} + 9 x^{10} + 364 x^{9} + 33 x^{8} + 720 x^{7} - 16731 x^{6} - 1002 x^{5} - 64041 x^{4} - 1125646 x^{3} + 428523 x^{2} - 4549998 x + 62837938$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$