Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 265 x^{12} - 498 x^{11} + 763 x^{10} - 966 x^{9} + 1007 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-17307213524714210420160\) \(\medspace = -\,2^{6}\cdot 3^{8}\cdot 5\cdot 43\cdot 61^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(24.54\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}43^{1/2}61^{2/3}\approx 1113.1270607407046$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(43\), \(61\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-215}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{26}a^{15}-\frac{1}{26}a^{14}+\frac{3}{26}a^{13}+\frac{5}{26}a^{11}+\frac{5}{26}a^{10}+\frac{5}{26}a^{9}+\frac{5}{26}a^{8}-\frac{11}{26}a^{7}+\frac{9}{26}a^{6}+\frac{4}{13}a^{5}+\frac{7}{26}a^{4}-\frac{11}{26}a^{3}+\frac{9}{26}a^{2}-\frac{2}{13}a-\frac{1}{13}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a-1$, $a$, $a^{3}-a^{2}+2a$, $\frac{7}{13}a^{15}-\frac{46}{13}a^{14}+\frac{367}{26}a^{13}-39a^{12}+\frac{2163}{26}a^{11}-\frac{3661}{26}a^{10}+\frac{5075}{26}a^{9}-\frac{5793}{26}a^{8}+\frac{5371}{26}a^{7}-\frac{1991}{13}a^{6}+\frac{2023}{26}a^{5}-\frac{276}{13}a^{4}-\frac{90}{13}a^{3}+\frac{89}{13}a^{2}+\frac{24}{13}a-\frac{1}{13}$, $\frac{47}{26}a^{15}-\frac{173}{13}a^{14}+\frac{740}{13}a^{13}-\frac{337}{2}a^{12}+\frac{9907}{26}a^{11}-\frac{8885}{13}a^{10}+\frac{25975}{26}a^{9}-\frac{31277}{26}a^{8}+\frac{30761}{26}a^{7}-\frac{12106}{13}a^{6}+\frac{13727}{26}a^{5}-\frac{4247}{26}a^{4}-\frac{486}{13}a^{3}+\frac{1697}{26}a^{2}-\frac{120}{13}a-\frac{55}{26}$, $\frac{1}{2}a^{14}-\frac{7}{2}a^{13}+\frac{29}{2}a^{12}-\frac{83}{2}a^{11}+91a^{10}-158a^{9}+224a^{8}-\frac{523}{2}a^{7}+249a^{6}-189a^{5}+101a^{4}-\frac{57}{2}a^{3}-\frac{17}{2}a^{2}+\frac{21}{2}a-\frac{5}{2}$, $\frac{1}{2}a^{14}-\frac{7}{2}a^{13}+15a^{12}-\frac{89}{2}a^{11}+\frac{203}{2}a^{10}-183a^{9}+269a^{8}-\frac{649}{2}a^{7}+\frac{639}{2}a^{6}-252a^{5}+\frac{281}{2}a^{4}-\frac{85}{2}a^{3}-14a^{2}+18a-3$, $\frac{2}{13}a^{15}-\frac{43}{26}a^{14}+\frac{110}{13}a^{13}-29a^{12}+\frac{1905}{26}a^{11}-\frac{1888}{13}a^{10}+\frac{3013}{13}a^{9}-\frac{3955}{13}a^{8}+\frac{8549}{26}a^{7}-\frac{3752}{13}a^{6}+\frac{2551}{13}a^{5}-\frac{2299}{26}a^{4}+\frac{186}{13}a^{3}+\frac{174}{13}a^{2}-\frac{73}{13}a-\frac{17}{13}$, $\frac{2}{13}a^{15}-\frac{17}{26}a^{14}+\frac{19}{13}a^{13}-\frac{1}{2}a^{12}-\frac{175}{26}a^{11}+\frac{348}{13}a^{10}-\frac{1605}{26}a^{9}+\frac{1375}{13}a^{8}-\frac{3749}{26}a^{7}+\frac{2046}{13}a^{6}-\frac{3621}{26}a^{5}+\frac{2381}{26}a^{4}-\frac{516}{13}a^{3}+\frac{127}{26}a^{2}+\frac{109}{13}a-\frac{30}{13}$, $\frac{1}{2}a^{12}-3a^{11}+\frac{21}{2}a^{10}-25a^{9}+45a^{8}-63a^{7}+\frac{141}{2}a^{6}-63a^{5}+\frac{81}{2}a^{4}-16a^{3}-\frac{5}{2}a^{2}+\frac{11}{2}a-\frac{1}{2}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 218886.822294 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{5}\cdot 218886.822294 \cdot 1}{2\cdot\sqrt{17307213524714210420160}}\cr\approx \mathstrut & 0.521381192011 \end{aligned}\] (assuming GRH)
Galois group
$C_4^4.C_2\wr A_4$ (as 16T1845):
A solvable group of order 49152 |
The 140 conjugacy class representatives for $C_4^4.C_2\wr A_4$ |
Character table for $C_4^4.C_2\wr A_4$ |
Intermediate fields
4.4.33489.1, 8.6.8972104968.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(3\) | 3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.12.0.1 | $x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
\(43\) | 43.2.0.1 | $x^{2} + 42 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
43.2.1.1 | $x^{2} + 86$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
43.3.0.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
43.3.0.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
43.6.0.1 | $x^{6} + 19 x^{3} + 28 x^{2} + 21 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(61\) | $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
61.12.8.1 | $x^{12} + 9 x^{10} + 364 x^{9} + 33 x^{8} + 720 x^{7} - 16731 x^{6} - 1002 x^{5} - 64041 x^{4} - 1125646 x^{3} + 428523 x^{2} - 4549998 x + 62837938$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |