Normalized defining polynomial
\( x^{16} - 22x^{14} + 135x^{12} - 213x^{10} + 551x^{8} - 797x^{6} + 443x^{4} - 86x^{2} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(67129786029648929079511980455641\) \(\medspace = 7^{2}\cdot 29^{8}\cdot 37^{8}\cdot 883^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(97.54\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{1/2}29^{1/2}37^{2/3}883^{1/2}\approx 4701.06425007895$ | ||
Ramified primes: | \(7\), \(29\), \(37\), \(883\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{980306}a^{14}+\frac{94723}{490153}a^{12}+\frac{50673}{980306}a^{10}-\frac{205213}{980306}a^{8}+\frac{45296}{490153}a^{6}-\frac{191824}{490153}a^{4}-\frac{1}{2}a^{3}+\frac{90463}{490153}a^{2}-\frac{1}{2}a-\frac{143079}{980306}$, $\frac{1}{980306}a^{15}+\frac{94723}{490153}a^{13}+\frac{50673}{980306}a^{11}-\frac{205213}{980306}a^{9}+\frac{45296}{490153}a^{7}-\frac{191824}{490153}a^{5}-\frac{1}{2}a^{4}+\frac{90463}{490153}a^{3}-\frac{1}{2}a^{2}-\frac{143079}{980306}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1745}{490153}a^{14}-\frac{49857}{980306}a^{12}-\frac{96463}{980306}a^{10}+\frac{1185464}{490153}a^{8}-\frac{962911}{980306}a^{6}+\frac{9479383}{980306}a^{4}-\frac{9198231}{980306}a^{2}-\frac{1}{2}a+\frac{2080809}{980306}$, $\frac{1745}{490153}a^{14}-\frac{49857}{980306}a^{12}-\frac{96463}{980306}a^{10}+\frac{1185464}{490153}a^{8}-\frac{962911}{980306}a^{6}+\frac{9479383}{980306}a^{4}-\frac{9198231}{980306}a^{2}+\frac{1}{2}a+\frac{2080809}{980306}$, $a$, $\frac{90491}{980306}a^{15}-\frac{90491}{980306}a^{14}-\frac{1903801}{980306}a^{13}+\frac{1903801}{980306}a^{12}+\frac{10362341}{980306}a^{11}-\frac{10362341}{980306}a^{10}-\frac{8815779}{980306}a^{9}+\frac{8815779}{980306}a^{8}+\frac{19336917}{490153}a^{7}-\frac{19336917}{490153}a^{6}-\frac{16242291}{490153}a^{5}+\frac{16242291}{490153}a^{4}-\frac{938226}{490153}a^{3}+\frac{938226}{490153}a^{2}-\frac{1440753}{980306}a-\frac{14853}{490153}$, $\frac{93981}{980306}a^{15}+\frac{87001}{980306}a^{14}-\frac{976829}{490153}a^{13}-\frac{926972}{490153}a^{12}+\frac{5132939}{490153}a^{11}+\frac{5229402}{490153}a^{10}-\frac{6444851}{980306}a^{9}-\frac{11186707}{980306}a^{8}+\frac{37710923}{980306}a^{7}+\frac{39636745}{980306}a^{6}-\frac{23005199}{980306}a^{5}-\frac{41963965}{980306}a^{4}-\frac{11074683}{980306}a^{3}+\frac{3415813}{490153}a^{2}+\frac{3090821}{980306}a-\frac{90491}{980306}$, $\frac{734037}{980306}a^{15}+\frac{71815}{490153}a^{14}-\frac{16128871}{980306}a^{13}-\frac{1582790}{490153}a^{12}+\frac{49313548}{490153}a^{11}+\frac{19487213}{980306}a^{10}-\frac{153042657}{980306}a^{9}-\frac{30762327}{980306}a^{8}+\frac{198413315}{490153}a^{7}+\frac{77081443}{980306}a^{6}-\frac{285420377}{490153}a^{5}-\frac{57528891}{490153}a^{4}+\frac{295965477}{980306}a^{3}+\frac{57797833}{980306}a^{2}-\frac{22400268}{490153}a-\frac{2591811}{490153}$, $\frac{384809}{490153}a^{15}+\frac{13711}{980306}a^{14}-\frac{17015107}{980306}a^{13}-\frac{158397}{490153}a^{12}+\frac{105702517}{980306}a^{11}+\frac{1095657}{490153}a^{10}-\frac{174483901}{980306}a^{9}-\frac{5098753}{980306}a^{8}+\frac{437617153}{980306}a^{7}+\frac{11332729}{980306}a^{6}-\frac{326992601}{490153}a^{5}-\frac{18991699}{980306}a^{4}+\frac{196192061}{490153}a^{3}+\frac{21578785}{980306}a^{2}-\frac{83197311}{980306}a-\frac{4738385}{490153}$, $\frac{47241}{21311}a^{15}-\frac{13960}{490153}a^{14}-\frac{1044136}{21311}a^{13}+\frac{199428}{490153}a^{12}+\frac{6478418}{21311}a^{11}+\frac{385852}{490153}a^{10}-\frac{10599756}{21311}a^{9}-\frac{9483712}{490153}a^{8}+\frac{26428603}{21311}a^{7}+\frac{3851644}{490153}a^{6}-\frac{39741544}{21311}a^{5}-\frac{37917532}{490153}a^{4}+\frac{22341568}{21311}a^{3}+\frac{35812618}{490153}a^{2}-\frac{4119503}{21311}a-\frac{10283848}{490153}$, $\frac{545915}{490153}a^{15}-\frac{1451397}{980306}a^{14}-\frac{11653276}{490153}a^{13}+\frac{15571070}{490153}a^{12}+\frac{66066436}{490153}a^{11}-\frac{89534341}{490153}a^{10}-\frac{145526177}{980306}a^{9}+\frac{212867289}{980306}a^{8}+\frac{251032622}{490153}a^{7}-\frac{689099433}{980306}a^{6}-\frac{533300493}{980306}a^{5}+\frac{784719537}{980306}a^{4}+\frac{119060005}{980306}a^{3}-\frac{118569574}{490153}a^{2}+\frac{8671937}{490153}a+\frac{1390156}{490153}$, $\frac{206086}{490153}a^{15}-\frac{370006}{490153}a^{14}-\frac{4890083}{490153}a^{13}+\frac{7485996}{490153}a^{12}+\frac{35087076}{490153}a^{11}-\frac{36252804}{490153}a^{10}-\frac{80040111}{490153}a^{9}+\frac{10193003}{980306}a^{8}+\frac{125294310}{490153}a^{7}-\frac{288661105}{980306}a^{6}-\frac{618787059}{980306}a^{5}+\frac{12897859}{980306}a^{4}+\frac{246320505}{980306}a^{3}+\frac{91500061}{980306}a^{2}+\frac{3476451}{490153}a-\frac{2183959}{980306}$, $\frac{11397755}{490153}a^{15}+\frac{2139364347}{490153}a^{13}-\frac{22890749557}{490153}a^{11}+\frac{32150091450}{490153}a^{9}-\frac{92110637540}{490153}a^{7}+\frac{144113389546}{490153}a^{5}-\frac{81634895888}{490153}a^{3}+\frac{15449458461}{490153}a$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7030073415.12 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 7030073415.12 \cdot 2}{2\cdot\sqrt{67129786029648929079511980455641}}\cr\approx \mathstrut & 0.342343169906 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr C_2^3:C_3$ (as 16T1656):
A solvable group of order 6144 |
The 69 conjugacy class representatives for $C_2\wr C_2^3:C_3$ |
Character table for $C_2\wr C_2^3:C_3$ |
Intermediate fields
4.4.1151329.2, 8.4.8193276879835621.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.3.0.1}{3} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\) | 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.6.0.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
7.6.0.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(29\) | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.8.4.1 | $x^{8} + 2784 x^{7} + 2906616 x^{6} + 1348864734 x^{5} + 234834277018 x^{4} + 41857830864 x^{3} + 492109772617 x^{2} + 3561769809750 x + 616658760166$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(37\) | $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
37.2.0.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.12.8.1 | $x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
\(883\) | Deg $4$ | $2$ | $2$ | $2$ | |||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |