Normalized defining polynomial
\( x^{18} - 9 x^{17} - 23 x^{16} + 300 x^{15} + 515 x^{14} - 4561 x^{13} - 10821 x^{12} + 31931 x^{11} + \cdots + 201125 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-14616700658977641856215848806693687375\) \(\medspace = -\,5^{3}\cdot 7^{12}\cdot 41^{4}\cdot 419^{3}\cdot 449^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(116.07\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}7^{2/3}41^{2/3}419^{1/2}449^{2/3}\approx 116773.46634277423$ | ||
Ramified primes: | \(5\), \(7\), \(41\), \(419\), \(449\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-2095}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{105}a^{16}-\frac{4}{105}a^{15}+\frac{22}{105}a^{14}+\frac{3}{7}a^{13}-\frac{1}{3}a^{12}-\frac{26}{105}a^{11}+\frac{4}{105}a^{10}+\frac{1}{5}a^{9}+\frac{44}{105}a^{8}-\frac{19}{105}a^{7}+\frac{1}{21}a^{6}+\frac{4}{15}a^{5}-\frac{19}{105}a^{4}+\frac{52}{105}a^{3}-\frac{8}{21}a^{2}-\frac{11}{35}a-\frac{5}{21}$, $\frac{1}{12\!\cdots\!75}a^{17}+\frac{52\!\cdots\!26}{12\!\cdots\!75}a^{16}-\frac{47\!\cdots\!84}{18\!\cdots\!25}a^{15}-\frac{93\!\cdots\!46}{25\!\cdots\!95}a^{14}+\frac{57\!\cdots\!28}{25\!\cdots\!95}a^{13}-\frac{10\!\cdots\!04}{14\!\cdots\!75}a^{12}-\frac{19\!\cdots\!77}{42\!\cdots\!25}a^{11}-\frac{53\!\cdots\!54}{12\!\cdots\!75}a^{10}-\frac{26\!\cdots\!71}{12\!\cdots\!75}a^{9}+\frac{35\!\cdots\!22}{42\!\cdots\!25}a^{8}+\frac{13\!\cdots\!72}{28\!\cdots\!55}a^{7}-\frac{54\!\cdots\!82}{12\!\cdots\!75}a^{6}+\frac{35\!\cdots\!76}{12\!\cdots\!75}a^{5}-\frac{57\!\cdots\!34}{18\!\cdots\!25}a^{4}+\frac{13\!\cdots\!07}{25\!\cdots\!95}a^{3}-\frac{49\!\cdots\!68}{12\!\cdots\!75}a^{2}-\frac{89\!\cdots\!58}{36\!\cdots\!85}a-\frac{14\!\cdots\!03}{50\!\cdots\!19}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{59\!\cdots\!24}{76\!\cdots\!25}a^{17}-\frac{65\!\cdots\!76}{76\!\cdots\!25}a^{16}-\frac{32\!\cdots\!12}{76\!\cdots\!25}a^{15}+\frac{41\!\cdots\!51}{15\!\cdots\!65}a^{14}-\frac{13\!\cdots\!23}{15\!\cdots\!65}a^{13}-\frac{11\!\cdots\!88}{25\!\cdots\!75}a^{12}-\frac{12\!\cdots\!48}{25\!\cdots\!75}a^{11}+\frac{31\!\cdots\!04}{76\!\cdots\!25}a^{10}+\frac{27\!\cdots\!21}{76\!\cdots\!25}a^{9}-\frac{17\!\cdots\!74}{85\!\cdots\!25}a^{8}-\frac{27\!\cdots\!63}{73\!\cdots\!65}a^{7}+\frac{23\!\cdots\!32}{76\!\cdots\!25}a^{6}+\frac{10\!\cdots\!74}{76\!\cdots\!25}a^{5}+\frac{67\!\cdots\!38}{76\!\cdots\!25}a^{4}-\frac{11\!\cdots\!67}{15\!\cdots\!65}a^{3}-\frac{10\!\cdots\!32}{76\!\cdots\!25}a^{2}-\frac{11\!\cdots\!69}{15\!\cdots\!65}a-\frac{56\!\cdots\!70}{30\!\cdots\!53}$, $\frac{59\!\cdots\!24}{76\!\cdots\!25}a^{17}-\frac{65\!\cdots\!76}{76\!\cdots\!25}a^{16}-\frac{32\!\cdots\!12}{76\!\cdots\!25}a^{15}+\frac{41\!\cdots\!51}{15\!\cdots\!65}a^{14}-\frac{13\!\cdots\!23}{15\!\cdots\!65}a^{13}-\frac{11\!\cdots\!88}{25\!\cdots\!75}a^{12}-\frac{12\!\cdots\!48}{25\!\cdots\!75}a^{11}+\frac{31\!\cdots\!04}{76\!\cdots\!25}a^{10}+\frac{27\!\cdots\!21}{76\!\cdots\!25}a^{9}-\frac{17\!\cdots\!74}{85\!\cdots\!25}a^{8}-\frac{27\!\cdots\!63}{73\!\cdots\!65}a^{7}+\frac{23\!\cdots\!32}{76\!\cdots\!25}a^{6}+\frac{10\!\cdots\!74}{76\!\cdots\!25}a^{5}+\frac{67\!\cdots\!38}{76\!\cdots\!25}a^{4}-\frac{11\!\cdots\!67}{15\!\cdots\!65}a^{3}-\frac{10\!\cdots\!32}{76\!\cdots\!25}a^{2}-\frac{11\!\cdots\!69}{15\!\cdots\!65}a-\frac{25\!\cdots\!17}{30\!\cdots\!53}$, $\frac{39\!\cdots\!24}{12\!\cdots\!75}a^{17}-\frac{47\!\cdots\!76}{12\!\cdots\!75}a^{16}+\frac{36\!\cdots\!88}{12\!\cdots\!75}a^{15}+\frac{23\!\cdots\!41}{25\!\cdots\!95}a^{14}-\frac{29\!\cdots\!68}{25\!\cdots\!95}a^{13}-\frac{55\!\cdots\!38}{42\!\cdots\!25}a^{12}+\frac{88\!\cdots\!84}{14\!\cdots\!75}a^{11}+\frac{14\!\cdots\!79}{12\!\cdots\!75}a^{10}+\frac{85\!\cdots\!21}{12\!\cdots\!75}a^{9}-\frac{20\!\cdots\!47}{42\!\cdots\!25}a^{8}-\frac{10\!\cdots\!48}{12\!\cdots\!95}a^{7}+\frac{39\!\cdots\!57}{12\!\cdots\!75}a^{6}+\frac{31\!\cdots\!74}{12\!\cdots\!75}a^{5}+\frac{38\!\cdots\!13}{12\!\cdots\!75}a^{4}+\frac{41\!\cdots\!13}{25\!\cdots\!95}a^{3}+\frac{24\!\cdots\!43}{12\!\cdots\!75}a^{2}-\frac{27\!\cdots\!34}{25\!\cdots\!95}a+\frac{27\!\cdots\!50}{50\!\cdots\!19}$, $\frac{19\!\cdots\!67}{14\!\cdots\!75}a^{17}-\frac{22\!\cdots\!28}{14\!\cdots\!75}a^{16}+\frac{20\!\cdots\!09}{14\!\cdots\!75}a^{15}+\frac{21\!\cdots\!33}{56\!\cdots\!91}a^{14}-\frac{12\!\cdots\!14}{28\!\cdots\!55}a^{13}-\frac{70\!\cdots\!87}{14\!\cdots\!75}a^{12}+\frac{17\!\cdots\!68}{14\!\cdots\!75}a^{11}+\frac{57\!\cdots\!02}{14\!\cdots\!75}a^{10}+\frac{60\!\cdots\!48}{14\!\cdots\!75}a^{9}-\frac{19\!\cdots\!08}{14\!\cdots\!75}a^{8}-\frac{16\!\cdots\!44}{40\!\cdots\!65}a^{7}-\frac{28\!\cdots\!19}{14\!\cdots\!75}a^{6}+\frac{11\!\cdots\!32}{14\!\cdots\!75}a^{5}+\frac{25\!\cdots\!09}{14\!\cdots\!75}a^{4}+\frac{53\!\cdots\!91}{28\!\cdots\!55}a^{3}+\frac{16\!\cdots\!69}{14\!\cdots\!75}a^{2}+\frac{25\!\cdots\!69}{56\!\cdots\!91}a+\frac{48\!\cdots\!37}{56\!\cdots\!91}$, $\frac{26\!\cdots\!99}{25\!\cdots\!95}a^{17}-\frac{52\!\cdots\!94}{50\!\cdots\!19}a^{16}-\frac{42\!\cdots\!06}{25\!\cdots\!95}a^{15}+\frac{86\!\cdots\!27}{25\!\cdots\!95}a^{14}+\frac{13\!\cdots\!40}{50\!\cdots\!19}a^{13}-\frac{45\!\cdots\!73}{84\!\cdots\!65}a^{12}-\frac{40\!\cdots\!30}{56\!\cdots\!91}a^{11}+\frac{11\!\cdots\!93}{25\!\cdots\!95}a^{10}+\frac{26\!\cdots\!57}{25\!\cdots\!95}a^{9}-\frac{16\!\cdots\!12}{12\!\cdots\!95}a^{8}-\frac{55\!\cdots\!58}{84\!\cdots\!65}a^{7}-\frac{10\!\cdots\!33}{25\!\cdots\!95}a^{6}+\frac{30\!\cdots\!07}{25\!\cdots\!95}a^{5}+\frac{65\!\cdots\!09}{25\!\cdots\!95}a^{4}+\frac{57\!\cdots\!92}{25\!\cdots\!95}a^{3}+\frac{41\!\cdots\!59}{36\!\cdots\!85}a^{2}+\frac{92\!\cdots\!57}{25\!\cdots\!95}a+\frac{16\!\cdots\!92}{50\!\cdots\!19}$, $\frac{15\!\cdots\!46}{12\!\cdots\!75}a^{17}-\frac{15\!\cdots\!39}{12\!\cdots\!75}a^{16}-\frac{21\!\cdots\!83}{12\!\cdots\!75}a^{15}+\frac{19\!\cdots\!41}{50\!\cdots\!19}a^{14}+\frac{90\!\cdots\!59}{36\!\cdots\!85}a^{13}-\frac{85\!\cdots\!09}{14\!\cdots\!75}a^{12}-\frac{30\!\cdots\!47}{42\!\cdots\!25}a^{11}+\frac{92\!\cdots\!93}{18\!\cdots\!25}a^{10}+\frac{14\!\cdots\!49}{12\!\cdots\!75}a^{9}-\frac{70\!\cdots\!68}{42\!\cdots\!25}a^{8}-\frac{21\!\cdots\!21}{28\!\cdots\!55}a^{7}-\frac{77\!\cdots\!21}{18\!\cdots\!25}a^{6}+\frac{19\!\cdots\!16}{12\!\cdots\!75}a^{5}+\frac{40\!\cdots\!17}{12\!\cdots\!75}a^{4}+\frac{55\!\cdots\!28}{25\!\cdots\!95}a^{3}-\frac{20\!\cdots\!28}{12\!\cdots\!75}a^{2}-\frac{55\!\cdots\!52}{50\!\cdots\!19}a-\frac{37\!\cdots\!32}{72\!\cdots\!17}$, $\frac{53\!\cdots\!62}{60\!\cdots\!75}a^{17}-\frac{44\!\cdots\!91}{42\!\cdots\!25}a^{16}+\frac{39\!\cdots\!83}{42\!\cdots\!25}a^{15}+\frac{70\!\cdots\!97}{28\!\cdots\!55}a^{14}-\frac{24\!\cdots\!48}{84\!\cdots\!65}a^{13}-\frac{20\!\cdots\!82}{60\!\cdots\!75}a^{12}+\frac{41\!\cdots\!71}{42\!\cdots\!25}a^{11}+\frac{40\!\cdots\!63}{14\!\cdots\!75}a^{10}+\frac{15\!\cdots\!48}{60\!\cdots\!75}a^{9}-\frac{47\!\cdots\!31}{42\!\cdots\!25}a^{8}-\frac{22\!\cdots\!63}{84\!\cdots\!65}a^{7}-\frac{18\!\cdots\!38}{42\!\cdots\!25}a^{6}+\frac{34\!\cdots\!12}{60\!\cdots\!75}a^{5}+\frac{44\!\cdots\!33}{42\!\cdots\!25}a^{4}+\frac{84\!\cdots\!28}{84\!\cdots\!65}a^{3}+\frac{80\!\cdots\!71}{14\!\cdots\!75}a^{2}+\frac{17\!\cdots\!16}{84\!\cdots\!65}a+\frac{23\!\cdots\!26}{56\!\cdots\!91}$, $\frac{27\!\cdots\!29}{12\!\cdots\!75}a^{17}-\frac{34\!\cdots\!46}{12\!\cdots\!75}a^{16}+\frac{38\!\cdots\!48}{12\!\cdots\!75}a^{15}+\frac{16\!\cdots\!71}{25\!\cdots\!95}a^{14}-\frac{31\!\cdots\!18}{25\!\cdots\!95}a^{13}-\frac{37\!\cdots\!73}{42\!\cdots\!25}a^{12}+\frac{48\!\cdots\!42}{42\!\cdots\!25}a^{11}+\frac{95\!\cdots\!09}{12\!\cdots\!75}a^{10}-\frac{27\!\cdots\!34}{12\!\cdots\!75}a^{9}-\frac{51\!\cdots\!79}{14\!\cdots\!75}a^{8}-\frac{32\!\cdots\!73}{12\!\cdots\!95}a^{7}+\frac{84\!\cdots\!72}{12\!\cdots\!75}a^{6}+\frac{16\!\cdots\!54}{12\!\cdots\!75}a^{5}+\frac{88\!\cdots\!23}{12\!\cdots\!75}a^{4}-\frac{72\!\cdots\!57}{25\!\cdots\!95}a^{3}-\frac{80\!\cdots\!22}{12\!\cdots\!75}a^{2}-\frac{87\!\cdots\!49}{25\!\cdots\!95}a-\frac{67\!\cdots\!97}{50\!\cdots\!19}$, $\frac{19\!\cdots\!57}{14\!\cdots\!75}a^{17}-\frac{72\!\cdots\!03}{14\!\cdots\!75}a^{16}-\frac{78\!\cdots\!01}{14\!\cdots\!75}a^{15}+\frac{29\!\cdots\!44}{28\!\cdots\!55}a^{14}+\frac{33\!\cdots\!41}{28\!\cdots\!55}a^{13}+\frac{30\!\cdots\!73}{14\!\cdots\!75}a^{12}-\frac{24\!\cdots\!01}{20\!\cdots\!25}a^{11}-\frac{31\!\cdots\!93}{14\!\cdots\!75}a^{10}+\frac{56\!\cdots\!93}{14\!\cdots\!75}a^{9}+\frac{26\!\cdots\!47}{14\!\cdots\!75}a^{8}+\frac{53\!\cdots\!89}{28\!\cdots\!55}a^{7}-\frac{37\!\cdots\!99}{14\!\cdots\!75}a^{6}-\frac{14\!\cdots\!73}{14\!\cdots\!75}a^{5}-\frac{20\!\cdots\!01}{14\!\cdots\!75}a^{4}-\frac{67\!\cdots\!00}{56\!\cdots\!91}a^{3}-\frac{91\!\cdots\!51}{14\!\cdots\!75}a^{2}-\frac{62\!\cdots\!01}{28\!\cdots\!55}a-\frac{25\!\cdots\!81}{56\!\cdots\!91}$, $\frac{27\!\cdots\!08}{20\!\cdots\!25}a^{17}-\frac{50\!\cdots\!87}{42\!\cdots\!25}a^{16}-\frac{14\!\cdots\!39}{42\!\cdots\!25}a^{15}+\frac{71\!\cdots\!68}{16\!\cdots\!73}a^{14}+\frac{22\!\cdots\!73}{28\!\cdots\!55}a^{13}-\frac{39\!\cdots\!39}{60\!\cdots\!75}a^{12}-\frac{68\!\cdots\!03}{42\!\cdots\!25}a^{11}+\frac{20\!\cdots\!83}{42\!\cdots\!25}a^{10}+\frac{38\!\cdots\!27}{20\!\cdots\!25}a^{9}-\frac{19\!\cdots\!82}{42\!\cdots\!25}a^{8}-\frac{87\!\cdots\!22}{84\!\cdots\!65}a^{7}-\frac{58\!\cdots\!01}{42\!\cdots\!25}a^{6}+\frac{63\!\cdots\!79}{60\!\cdots\!75}a^{5}+\frac{21\!\cdots\!86}{42\!\cdots\!25}a^{4}+\frac{53\!\cdots\!34}{84\!\cdots\!65}a^{3}+\frac{17\!\cdots\!26}{42\!\cdots\!25}a^{2}+\frac{96\!\cdots\!74}{56\!\cdots\!91}a+\frac{67\!\cdots\!83}{16\!\cdots\!73}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 625949725971 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{7}\cdot 625949725971 \cdot 1}{2\cdot\sqrt{14616700658977641856215848806693687375}}\cr\approx \mathstrut & 0.506365190150983 \end{aligned}\] (assuming GRH)
Galois group
$C_3^6.C_2\wr C_6$ (as 18T858):
A solvable group of order 279936 |
The 159 conjugacy class representatives for $C_3^6.C_2\wr C_6$ |
Character table for $C_3^6.C_2\wr C_6$ |
Intermediate fields
\(\Q(\zeta_{7})^+\), 6.4.1006019.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 sibling: | data not computed |
Degree 24 sibling: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 18.8.3838671405368745874099609375.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.6.0.1}{6} }$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }^{4}$ | R | R | $18$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ | $18$ | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{8}$ | $18$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.3.0.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
5.6.3.1 | $x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
\(7\) | 7.3.2.2 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
7.3.2.2 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
7.3.2.2 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
7.3.2.2 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
7.6.4.3 | $x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
\(41\) | 41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.3.0.1 | $x^{3} + x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
41.3.0.1 | $x^{3} + x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
41.6.4.2 | $x^{6} - 1804 x^{3} - 4557191$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
\(419\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $6$ | $2$ | $3$ | $3$ | ||||
\(449\) | Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $6$ | $3$ | $2$ | $4$ |