Properties

Label 18.6.194...000.1
Degree 1818
Signature [6,6][6, 6]
Discriminant 1.945×10221.945\times 10^{22}
Root discriminant 17.3117.31
Ramified primes 2,5,72,5,7
Class number 11
Class group trivial
Galois group S3×C6S_3 \times C_6 (as 18T6)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1)
 
gp: K = bnfinit(y^18 - 6*y^17 + 11*y^16 + 6*y^15 - 60*y^14 + 122*y^13 - 141*y^12 + 74*y^11 + 54*y^10 - 122*y^9 + 71*y^8 + 36*y^7 - 70*y^6 + 16*y^5 + 33*y^4 - 10*y^3 - 11*y^2 - 4*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1)
 

x186x17+11x16+6x1560x14+122x13141x12+74x11+54x10++1 x^{18} - 6 x^{17} + 11 x^{16} + 6 x^{15} - 60 x^{14} + 122 x^{13} - 141 x^{12} + 74 x^{11} + 54 x^{10} + \cdots + 1 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  1818
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [6,6][6, 6]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   1944601194472652800000019446011944726528000000 =21856715\medspace = 2^{18}\cdot 5^{6}\cdot 7^{15} Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  17.3117.31
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  251/275/622.6341069937211372\cdot 5^{1/2}7^{5/6}\approx 22.634106993721137
Ramified primes:   22, 55, 77 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(7)\Q(\sqrt{7})
Aut(K/Q)\Aut(K/\Q):   C6C_6
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, a10a^{10}, a11a^{11}, a12a^{12}, a13a^{13}, a14a^{14}, 13a1513a14+13a1313a1113a1013a813a7+13a6+13a5+13a4+13a3+13\frac{1}{3}a^{15}-\frac{1}{3}a^{14}+\frac{1}{3}a^{13}-\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}, 13a16+13a1313a12+13a1113a1013a9+13a813a613a513a4+13a3+13a+13\frac{1}{3}a^{16}+\frac{1}{3}a^{13}-\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}, 186029642954203a178696497212796617664842631a16+723566892621186029642954203a15750657313143628676547651401a14+3453829162415686029642954203a132341163209435686029642954203a12+311490572674528676547651401a111111883204393886029642954203a101436730415696686029642954203a9+3830113053537486029642954203a8+1466628610509186029642954203a7+837532333945386029642954203a6+512329602274086029642954203a5693765789316728676547651401a4+520540347703228676547651401a33821790304387786029642954203a21430857646438128676547651401a+1255721314046428676547651401\frac{1}{86029642954203}a^{17}-\frac{869649721279}{6617664842631}a^{16}+\frac{7235668926211}{86029642954203}a^{15}-\frac{7506573131436}{28676547651401}a^{14}+\frac{34538291624156}{86029642954203}a^{13}-\frac{23411632094356}{86029642954203}a^{12}+\frac{3114905726745}{28676547651401}a^{11}-\frac{11118832043938}{86029642954203}a^{10}-\frac{14367304156966}{86029642954203}a^{9}+\frac{38301130535374}{86029642954203}a^{8}+\frac{14666286105091}{86029642954203}a^{7}+\frac{8375323339453}{86029642954203}a^{6}+\frac{5123296022740}{86029642954203}a^{5}-\frac{6937657893167}{28676547651401}a^{4}+\frac{5205403477032}{28676547651401}a^{3}-\frac{38217903043877}{86029642954203}a^{2}-\frac{14308576464381}{28676547651401}a+\frac{12557213140464}{28676547651401} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Trivial group, which has order 11

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  1111
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   328954208222886029642954203a1717997577017826617664842631a16+5502806923659786029642954203a15150070565429028676547651401a1423765949329783286029642954203a13+57452002625183386029642954203a1224948916759078728676547651401a11+55508038469676886029642954203a10+3287980782335086029642954203a953873348324227186029642954203a8+47086284335252886029642954203a710322764821833686029642954203a67254400337164486029642954203a51864242198066228676547651401a4+5704043721271528676547651401a3+59428017631986029642954203a23790107748494228676547651401a1388274948904228676547651401\frac{3289542082228}{86029642954203}a^{17}-\frac{1799757701782}{6617664842631}a^{16}+\frac{55028069236597}{86029642954203}a^{15}-\frac{1500705654290}{28676547651401}a^{14}-\frac{237659493297832}{86029642954203}a^{13}+\frac{574520026251833}{86029642954203}a^{12}-\frac{249489167590787}{28676547651401}a^{11}+\frac{555080384696768}{86029642954203}a^{10}+\frac{32879807823350}{86029642954203}a^{9}-\frac{538733483242271}{86029642954203}a^{8}+\frac{470862843352528}{86029642954203}a^{7}-\frac{103227648218336}{86029642954203}a^{6}-\frac{72544003371644}{86029642954203}a^{5}-\frac{18642421980662}{28676547651401}a^{4}+\frac{57040437212715}{28676547651401}a^{3}+\frac{594280176319}{86029642954203}a^{2}-\frac{37901077484942}{28676547651401}a-\frac{13882749489042}{28676547651401}, 1010744416153486029642954203a1713106890011352205888280877a16+1753745761609528676547651401a15+17510387211481786029642954203a1456929899525329986029642954203a13+65201171538941686029642954203a1215144448128626686029642954203a1181437985011702986029642954203a10+14 ⁣ ⁣4386029642954203a925363106965609028676547651401a871156732895815086029642954203a7+14 ⁣ ⁣6086029642954203a653592992342920486029642954203a560859555830105786029642954203a4+24062130010727828676547651401a3+20060329073563786029642954203a233266860063666686029642954203a3001723835639228676547651401\frac{10107444161534}{86029642954203}a^{17}-\frac{1310689001135}{2205888280877}a^{16}+\frac{17537457616095}{28676547651401}a^{15}+\frac{175103872114817}{86029642954203}a^{14}-\frac{569298995253299}{86029642954203}a^{13}+\frac{652011715389416}{86029642954203}a^{12}-\frac{151444481286266}{86029642954203}a^{11}-\frac{814379850117029}{86029642954203}a^{10}+\frac{14\!\cdots\!43}{86029642954203}a^{9}-\frac{253631069656090}{28676547651401}a^{8}-\frac{711567328958150}{86029642954203}a^{7}+\frac{14\!\cdots\!60}{86029642954203}a^{6}-\frac{535929923429204}{86029642954203}a^{5}-\frac{608595558301057}{86029642954203}a^{4}+\frac{240621300107278}{28676547651401}a^{3}+\frac{200603290735637}{86029642954203}a^{2}-\frac{332668600636666}{86029642954203}a-\frac{30017238356392}{28676547651401}, 746503769891875699a17177733258029675627097a16+736363010029675627097a151733676066829675627097a14+1067088264429675627097a13+6228032511129675627097a12726505520969891875699a11+37030613797429675627097a1039126140079229675627097a9+665686494119891875699a8+11209296718029675627097a7903410640769891875699a6+502649128449891875699a5+262126883639891875699a415822654807229675627097a3+187991680589891875699a2+6143338691629675627097a2768338568029675627097\frac{74650376}{9891875699}a^{17}-\frac{1777332580}{29675627097}a^{16}+\frac{7363630100}{29675627097}a^{15}-\frac{17336760668}{29675627097}a^{14}+\frac{10670882644}{29675627097}a^{13}+\frac{62280325111}{29675627097}a^{12}-\frac{72650552096}{9891875699}a^{11}+\frac{370306137974}{29675627097}a^{10}-\frac{391261400792}{29675627097}a^{9}+\frac{66568649411}{9891875699}a^{8}+\frac{112092967180}{29675627097}a^{7}-\frac{90341064076}{9891875699}a^{6}+\frac{50264912844}{9891875699}a^{5}+\frac{26212688363}{9891875699}a^{4}-\frac{158226548072}{29675627097}a^{3}+\frac{18799168058}{9891875699}a^{2}+\frac{61433386916}{29675627097}a-\frac{27683385680}{29675627097}, 20882875929891875699a173497732574229675627097a16+5247037856029675627097a15+7127248220229675627097a141236026951589891875699a13+60632342958229675627097a1251190651226829675627097a1196121716149891875699a10+67956952926829675627097a968616356967429675627097a8+2272129171029675627097a7+63460315206729675627097a652299911723029675627097a58463721606729675627097a4+1235057648029891875699a3167666856519891875699a211295861153229675627097a60928000999891875699\frac{2088287592}{9891875699}a^{17}-\frac{34977325742}{29675627097}a^{16}+\frac{52470378560}{29675627097}a^{15}+\frac{71272482202}{29675627097}a^{14}-\frac{123602695158}{9891875699}a^{13}+\frac{606323429582}{29675627097}a^{12}-\frac{511906512268}{29675627097}a^{11}-\frac{9612171614}{9891875699}a^{10}+\frac{679569529268}{29675627097}a^{9}-\frac{686163569674}{29675627097}a^{8}+\frac{22721291710}{29675627097}a^{7}+\frac{634603152067}{29675627097}a^{6}-\frac{522999117230}{29675627097}a^{5}-\frac{84637216067}{29675627097}a^{4}+\frac{123505764802}{9891875699}a^{3}-\frac{16766685651}{9891875699}a^{2}-\frac{112958611532}{29675627097}a-\frac{6092800099}{9891875699}, 865107998689028676547651401a17116948814648176617664842631a16+8914535261479328676547651401a15+5812685577578928676547651401a1415 ⁣ ⁣1986029642954203a13+30 ⁣ ⁣2786029642954203a1234 ⁣ ⁣2686029642954203a11+17 ⁣ ⁣1786029642954203a10+14 ⁣ ⁣9586029642954203a932 ⁣ ⁣7686029642954203a8+68964834947221628676547651401a7+62914749112300186029642954203a616 ⁣ ⁣5286029642954203a5+63635394109025686029642954203a4+51366283272321486029642954203a36442043132754528676547651401a29194136988898386029642954203a18031018257740386029642954203\frac{8651079986890}{28676547651401}a^{17}-\frac{11694881464817}{6617664842631}a^{16}+\frac{89145352614793}{28676547651401}a^{15}+\frac{58126855775789}{28676547651401}a^{14}-\frac{15\!\cdots\!19}{86029642954203}a^{13}+\frac{30\!\cdots\!27}{86029642954203}a^{12}-\frac{34\!\cdots\!26}{86029642954203}a^{11}+\frac{17\!\cdots\!17}{86029642954203}a^{10}+\frac{14\!\cdots\!95}{86029642954203}a^{9}-\frac{32\!\cdots\!76}{86029642954203}a^{8}+\frac{689648349472216}{28676547651401}a^{7}+\frac{629147491123001}{86029642954203}a^{6}-\frac{16\!\cdots\!52}{86029642954203}a^{5}+\frac{636353941090256}{86029642954203}a^{4}+\frac{513662832723214}{86029642954203}a^{3}-\frac{64420431327545}{28676547651401}a^{2}-\frac{91941369888983}{86029642954203}a-\frac{180310182577403}{86029642954203}, 90654145402328676547651401a1713332717844426617664842631a16+1417596920258328676547651401a15964192125095728676547651401a1412431390183507886029642954203a13+46936349607268386029642954203a1284582335209913586029642954203a11+88143922079117586029642954203a1041575577113336786029642954203a933555337694726286029642954203a8+27250380594291028676547651401a754699841971398686029642954203a61405157724357886029642954203a5+31200125033957286029642954203a48452102111361286029642954203a34105787031930328676547651401a2+17901744719119786029642954203a+3707746064635186029642954203\frac{906541454023}{28676547651401}a^{17}-\frac{1333271784442}{6617664842631}a^{16}+\frac{14175969202583}{28676547651401}a^{15}-\frac{9641921250957}{28676547651401}a^{14}-\frac{124313901835078}{86029642954203}a^{13}+\frac{469363496072683}{86029642954203}a^{12}-\frac{845823352099135}{86029642954203}a^{11}+\frac{881439220791175}{86029642954203}a^{10}-\frac{415755771133367}{86029642954203}a^{9}-\frac{335553376947262}{86029642954203}a^{8}+\frac{272503805942910}{28676547651401}a^{7}-\frac{546998419713986}{86029642954203}a^{6}-\frac{14051577243578}{86029642954203}a^{5}+\frac{312001250339572}{86029642954203}a^{4}-\frac{84521021113612}{86029642954203}a^{3}-\frac{41057870319303}{28676547651401}a^{2}+\frac{179017447191197}{86029642954203}a+\frac{37077460646351}{86029642954203}, 91629479779028676547651401a172414568151442205888280877a16518177091870428676547651401a15+3799124976689028676547651401a145285913877589928676547651401a133416479512984728676547651401a12+21608533820842728676547651401a1139077866070245528676547651401a10+39791317023952928676547651401a913868335853897128676547651401a815891429875271428676547651401a7+21383223800800028676547651401a6912771051703728676547651401a515420945372659928676547651401a4+6947762205219228676547651401a3+8022594993487428676547651401a23495051425091728676547651401a1584969116589028676547651401\frac{916294797790}{28676547651401}a^{17}-\frac{241456815144}{2205888280877}a^{16}-\frac{5181770918704}{28676547651401}a^{15}+\frac{37991249766890}{28676547651401}a^{14}-\frac{52859138775899}{28676547651401}a^{13}-\frac{34164795129847}{28676547651401}a^{12}+\frac{216085338208427}{28676547651401}a^{11}-\frac{390778660702455}{28676547651401}a^{10}+\frac{397913170239529}{28676547651401}a^{9}-\frac{138683358538971}{28676547651401}a^{8}-\frac{158914298752714}{28676547651401}a^{7}+\frac{213832238008000}{28676547651401}a^{6}-\frac{9127710517037}{28676547651401}a^{5}-\frac{154209453726599}{28676547651401}a^{4}+\frac{69477622052192}{28676547651401}a^{3}+\frac{80225949934874}{28676547651401}a^{2}-\frac{34950514250917}{28676547651401}a-\frac{15849691165890}{28676547651401}, 246240985113328676547651401a177658762056472205888280877a16+315827849734786029642954203a15+16282963309303386029642954203a1432215552750424886029642954203a13+5691621135203728676547651401a12+33019769980798086029642954203a1110 ⁣ ⁣0886029642954203a10+40832343355259428676547651401a940050633257034886029642954203a854938703502598086029642954203a7+93174134241052486029642954203a617512496086344486029642954203a546826588676097986029642954203a4+42066860574115186029642954203a3+6295695441211428676547651401a23738094070864628676547651401a4937920421419686029642954203\frac{2462409851133}{28676547651401}a^{17}-\frac{765876205647}{2205888280877}a^{16}+\frac{3158278497347}{86029642954203}a^{15}+\frac{162829633093033}{86029642954203}a^{14}-\frac{322155527504248}{86029642954203}a^{13}+\frac{56916211352037}{28676547651401}a^{12}+\frac{330197699807980}{86029642954203}a^{11}-\frac{10\!\cdots\!08}{86029642954203}a^{10}+\frac{408323433552594}{28676547651401}a^{9}-\frac{400506332570348}{86029642954203}a^{8}-\frac{549387035025980}{86029642954203}a^{7}+\frac{931741342410524}{86029642954203}a^{6}-\frac{175124960863444}{86029642954203}a^{5}-\frac{468265886760979}{86029642954203}a^{4}+\frac{420668605741151}{86029642954203}a^{3}+\frac{62956954412114}{28676547651401}a^{2}-\frac{37380940708646}{28676547651401}a-\frac{49379204214196}{86029642954203}, 295181842036228676547651401a1715794366600972205888280877a16+15476927744969986029642954203a158436336576452686029642954203a1448126457218089886029642954203a13+52667085679186528676547651401a1227 ⁣ ⁣6786029642954203a11+29 ⁣ ⁣5286029642954203a1054071059161281828676547651401a947595316995885286029642954203a8+18 ⁣ ⁣5686029642954203a715 ⁣ ⁣3286029642954203a6+25558588131839986029642954203a5+58960155724950886029642954203a449105586002232886029642954203a3+1879064937892928676547651401a2+2816993040156728676547651401a11796360715114686029642954203\frac{2951818420362}{28676547651401}a^{17}-\frac{1579436660097}{2205888280877}a^{16}+\frac{154769277449699}{86029642954203}a^{15}-\frac{84363365764526}{86029642954203}a^{14}-\frac{481264572180898}{86029642954203}a^{13}+\frac{526670856791865}{28676547651401}a^{12}-\frac{27\!\cdots\!67}{86029642954203}a^{11}+\frac{29\!\cdots\!52}{86029642954203}a^{10}-\frac{540710591612818}{28676547651401}a^{9}-\frac{475953169958852}{86029642954203}a^{8}+\frac{18\!\cdots\!56}{86029642954203}a^{7}-\frac{15\!\cdots\!32}{86029642954203}a^{6}+\frac{255585881318399}{86029642954203}a^{5}+\frac{589601557249508}{86029642954203}a^{4}-\frac{491055860022328}{86029642954203}a^{3}+\frac{18790649378929}{28676547651401}a^{2}+\frac{28169930401567}{28676547651401}a-\frac{117963607151146}{86029642954203}, 1020468991406686029642954203a1750358291061856617664842631a16+13645318731924586029642954203a15+645521534018828676547651401a1463947152082212486029642954203a13+14 ⁣ ⁣5786029642954203a1263719017606656228676547651401a11+12 ⁣ ⁣5786029642954203a10+29646618573343386029642954203a913 ⁣ ⁣6986029642954203a8+96190463416947286029642954203a7+46420242393605986029642954203a612 ⁣ ⁣6086029642954203a5+19694370455476828676547651401a4+13260623266336228676547651401a345845861947731786029642954203a2+2579882898023128676547651401a+2503861028889028676547651401\frac{10204689914066}{86029642954203}a^{17}-\frac{5035829106185}{6617664842631}a^{16}+\frac{136453187319245}{86029642954203}a^{15}+\frac{6455215340188}{28676547651401}a^{14}-\frac{639471520822124}{86029642954203}a^{13}+\frac{14\!\cdots\!57}{86029642954203}a^{12}-\frac{637190176066562}{28676547651401}a^{11}+\frac{12\!\cdots\!57}{86029642954203}a^{10}+\frac{296466185733433}{86029642954203}a^{9}-\frac{13\!\cdots\!69}{86029642954203}a^{8}+\frac{961904634169472}{86029642954203}a^{7}+\frac{464202423936059}{86029642954203}a^{6}-\frac{12\!\cdots\!60}{86029642954203}a^{5}+\frac{196943704554768}{28676547651401}a^{4}+\frac{132606232663362}{28676547651401}a^{3}-\frac{458458619477317}{86029642954203}a^{2}+\frac{25798828980231}{28676547651401}a+\frac{25038610288890}{28676547651401}, 150106256790486029642954203a177716073037846617664842631a16+1560676906219086029642954203a15+1270328713610528676547651401a1416473276507125386029642954203a13+6518529621912228676547651401a12+5284382115789286029642954203a1117408824647818028676547651401a10+31025898498278428676547651401a924538477134346028676547651401a814048923131078886029642954203a7+83626029152655886029642954203a673946648344196286029642954203a537290595153186029642954203a4+50425172468965486029642954203a327553182823535986029642954203a219193013048839286029642954203a+11830733334481786029642954203\frac{1501062567904}{86029642954203}a^{17}-\frac{771607303784}{6617664842631}a^{16}+\frac{15606769062190}{86029642954203}a^{15}+\frac{12703287136105}{28676547651401}a^{14}-\frac{164732765071253}{86029642954203}a^{13}+\frac{65185296219122}{28676547651401}a^{12}+\frac{52843821157892}{86029642954203}a^{11}-\frac{174088246478180}{28676547651401}a^{10}+\frac{310258984982784}{28676547651401}a^{9}-\frac{245384771343460}{28676547651401}a^{8}-\frac{140489231310788}{86029642954203}a^{7}+\frac{836260291526558}{86029642954203}a^{6}-\frac{739466483441962}{86029642954203}a^{5}-\frac{372905951531}{86029642954203}a^{4}+\frac{504251724689654}{86029642954203}a^{3}-\frac{275531828235359}{86029642954203}a^{2}-\frac{191930130488392}{86029642954203}a+\frac{118307333344817}{86029642954203} Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  13385.82469770262 13385.82469770262
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(26(2π)613385.824697702621219446011944726528000000(0.188998800336351 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 13385.82469770262 \cdot 1}{2\cdot\sqrt{19446011944726528000000}}\cr\approx \mathstrut & 0.188998800336351 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C6×S3C_6\times S_3 (as 18T6):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for S3×C6S_3 \times C_6
Character table for S3×C6S_3 \times C_6

Intermediate fields

Q(7)\Q(\sqrt{7}) , 3.1.980.1, Q(ζ7)+\Q(\zeta_{7})^+, 6.2.26891200.1, Q(ζ28)+\Q(\zeta_{28})^+, 9.3.941192000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 12 sibling: 12.0.368947264000000.7
Degree 18 sibling: 18.0.37980492079544000000000.2
Minimal sibling: 12.0.368947264000000.7

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 36{\href{/padicField/3.3.0.1}{3} }^{6} R R 63{\href{/padicField/11.6.0.1}{6} }^{3} 29{\href{/padicField/13.2.0.1}{2} }^{9} 63{\href{/padicField/17.6.0.1}{6} }^{3} 62,32{\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2} 63{\href{/padicField/23.6.0.1}{6} }^{3} 36{\href{/padicField/29.3.0.1}{3} }^{6} 62,32{\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2} 62,32{\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2} 63{\href{/padicField/41.6.0.1}{6} }^{3} 63{\href{/padicField/43.6.0.1}{6} }^{3} 36{\href{/padicField/47.3.0.1}{3} }^{6} 62,32{\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2} 62,32{\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.3.2.6a1.1x6+2x4+4x3+x2+4x+5x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 5223366C6C_6[2]3[2]^{3}
2.6.2.12a1.1x12+2x10+2x9+x8+4x7+5x6+2x5+6x4+4x3+x2+4x+5x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 5 x^{6} + 2 x^{5} + 6 x^{4} + 4 x^{3} + x^{2} + 4 x + 522661212C6×C2C_6\times C_2[2]6[2]^{6}
55 Copy content Toggle raw display 5.6.1.0a1.1x6+x4+4x3+x2+2x^{6} + x^{4} + 4 x^{3} + x^{2} + 2116600C6C_6[ ]6[\ ]^{6}
5.6.2.6a1.2x12+2x10+8x9+3x8+8x7+22x6+8x5+5x4+16x3+4x2+9x^{12} + 2 x^{10} + 8 x^{9} + 3 x^{8} + 8 x^{7} + 22 x^{6} + 8 x^{5} + 5 x^{4} + 16 x^{3} + 4 x^{2} + 9226666C6×C2C_6\times C_2[ ]26[\ ]_{2}^{6}
77 Copy content Toggle raw display 7.3.6.15a1.4x18+36x17+540x16+4344x15+20160x14+55296x13+98736x12+161280x11+238464x10+208640x9+334080x8+138240x7+280320x6+46080x5+138240x4+6144x3+36871x2+4117x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98736 x^{12} + 161280 x^{11} + 238464 x^{10} + 208640 x^{9} + 334080 x^{8} + 138240 x^{7} + 280320 x^{6} + 46080 x^{5} + 138240 x^{4} + 6144 x^{3} + 36871 x^{2} + 411766331515C6×C3C_6 \times C_3[ ]63[\ ]_{6}^{3}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)