sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1)
gp: K = bnfinit(y^18 - 6*y^17 + 11*y^16 + 6*y^15 - 60*y^14 + 122*y^13 - 141*y^12 + 74*y^11 + 54*y^10 - 122*y^9 + 71*y^8 + 36*y^7 - 70*y^6 + 16*y^5 + 33*y^4 - 10*y^3 - 11*y^2 - 4*y + 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1)
x18−6x17+11x16+6x15−60x14+122x13−141x12+74x11+54x10+⋯+1
sage: K.defining_polynomial()
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree: | | 18 |
|
Signature: | | [6,6] |
|
Discriminant: | |
19446011944726528000000
=218⋅56⋅715
|
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
|
Root discriminant: | | 17.31 | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
|
Galois root discriminant: | | 2⋅51/275/6≈22.634106993721137
|
Ramified primes: | |
2, 5, 7
|
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
|
Discriminant root field: | | Q(7)
|
Aut(K/Q):
| | C6 |
|
This field is not Galois over Q. |
This is not a CM field. |
1, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, 31a15−31a14+31a13−31a11−31a10−31a8−31a7+31a6+31a5+31a4+31a3+31, 31a16+31a13−31a12+31a11−31a10−31a9+31a8−31a6−31a5−31a4+31a3+31a+31, 860296429542031a17−6617664842631869649721279a16+860296429542037235668926211a15−286765476514017506573131436a14+8602964295420334538291624156a13−8602964295420323411632094356a12+286765476514013114905726745a11−8602964295420311118832043938a10−8602964295420314367304156966a9+8602964295420338301130535374a8+8602964295420314666286105091a7+860296429542038375323339453a6+860296429542035123296022740a5−286765476514016937657893167a4+286765476514015205403477032a3−8602964295420338217903043877a2−2867654765140114308576464381a+2867654765140112557213140464
Trivial group, which has order 1
sage: K.class_group().invariants()
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank: | | 11
|
|
Torsion generator: | |
−1
(order 2)
| sage: UK.torsion_generator()
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
|
Fundamental units: | |
860296429542033289542082228a17−66176648426311799757701782a16+8602964295420355028069236597a15−286765476514011500705654290a14−86029642954203237659493297832a13+86029642954203574520026251833a12−28676547651401249489167590787a11+86029642954203555080384696768a10+8602964295420332879807823350a9−86029642954203538733483242271a8+86029642954203470862843352528a7−86029642954203103227648218336a6−8602964295420372544003371644a5−2867654765140118642421980662a4+2867654765140157040437212715a3+86029642954203594280176319a2−2867654765140137901077484942a−2867654765140113882749489042, 8602964295420310107444161534a17−22058882808771310689001135a16+2867654765140117537457616095a15+86029642954203175103872114817a14−86029642954203569298995253299a13+86029642954203652011715389416a12−86029642954203151444481286266a11−86029642954203814379850117029a10+8602964295420314⋯43a9−28676547651401253631069656090a8−86029642954203711567328958150a7+8602964295420314⋯60a6−86029642954203535929923429204a5−86029642954203608595558301057a4+28676547651401240621300107278a3+86029642954203200603290735637a2−86029642954203332668600636666a−2867654765140130017238356392, 989187569974650376a17−296756270971777332580a16+296756270977363630100a15−2967562709717336760668a14+2967562709710670882644a13+2967562709762280325111a12−989187569972650552096a11+29675627097370306137974a10−29675627097391261400792a9+989187569966568649411a8+29675627097112092967180a7−989187569990341064076a6+989187569950264912844a5+989187569926212688363a4−29675627097158226548072a3+989187569918799168058a2+2967562709761433386916a−2967562709727683385680, 98918756992088287592a17−2967562709734977325742a16+2967562709752470378560a15+2967562709771272482202a14−9891875699123602695158a13+29675627097606323429582a12−29675627097511906512268a11−98918756999612171614a10+29675627097679569529268a9−29675627097686163569674a8+2967562709722721291710a7+29675627097634603152067a6−29675627097522999117230a5−2967562709784637216067a4+9891875699123505764802a3−989187569916766685651a2−29675627097112958611532a−98918756996092800099, 286765476514018651079986890a17−661766484263111694881464817a16+2867654765140189145352614793a15+2867654765140158126855775789a14−8602964295420315⋯19a13+8602964295420330⋯27a12−8602964295420334⋯26a11+8602964295420317⋯17a10+8602964295420314⋯95a9−8602964295420332⋯76a8+28676547651401689648349472216a7+86029642954203629147491123001a6−8602964295420316⋯52a5+86029642954203636353941090256a4+86029642954203513662832723214a3−2867654765140164420431327545a2−8602964295420391941369888983a−86029642954203180310182577403, 28676547651401906541454023a17−66176648426311333271784442a16+2867654765140114175969202583a15−286765476514019641921250957a14−86029642954203124313901835078a13+86029642954203469363496072683a12−86029642954203845823352099135a11+86029642954203881439220791175a10−86029642954203415755771133367a9−86029642954203335553376947262a8+28676547651401272503805942910a7−86029642954203546998419713986a6−8602964295420314051577243578a5+86029642954203312001250339572a4−8602964295420384521021113612a3−2867654765140141057870319303a2+86029642954203179017447191197a+8602964295420337077460646351, 28676547651401916294797790a17−2205888280877241456815144a16−286765476514015181770918704a15+2867654765140137991249766890a14−2867654765140152859138775899a13−2867654765140134164795129847a12+28676547651401216085338208427a11−28676547651401390778660702455a10+28676547651401397913170239529a9−28676547651401138683358538971a8−28676547651401158914298752714a7+28676547651401213832238008000a6−286765476514019127710517037a5−28676547651401154209453726599a4+2867654765140169477622052192a3+2867654765140180225949934874a2−2867654765140134950514250917a−2867654765140115849691165890, 286765476514012462409851133a17−2205888280877765876205647a16+860296429542033158278497347a15+86029642954203162829633093033a14−86029642954203322155527504248a13+2867654765140156916211352037a12+86029642954203330197699807980a11−8602964295420310⋯08a10+28676547651401408323433552594a9−86029642954203400506332570348a8−86029642954203549387035025980a7+86029642954203931741342410524a6−86029642954203175124960863444a5−86029642954203468265886760979a4+86029642954203420668605741151a3+2867654765140162956954412114a2−2867654765140137380940708646a−8602964295420349379204214196, 286765476514012951818420362a17−22058882808771579436660097a16+86029642954203154769277449699a15−8602964295420384363365764526a14−86029642954203481264572180898a13+28676547651401526670856791865a12−8602964295420327⋯67a11+8602964295420329⋯52a10−28676547651401540710591612818a9−86029642954203475953169958852a8+8602964295420318⋯56a7−8602964295420315⋯32a6+86029642954203255585881318399a5+86029642954203589601557249508a4−86029642954203491055860022328a3+2867654765140118790649378929a2+2867654765140128169930401567a−86029642954203117963607151146, 8602964295420310204689914066a17−66176648426315035829106185a16+86029642954203136453187319245a15+286765476514016455215340188a14−86029642954203639471520822124a13+8602964295420314⋯57a12−28676547651401637190176066562a11+8602964295420312⋯57a10+86029642954203296466185733433a9−8602964295420313⋯69a8+86029642954203961904634169472a7+86029642954203464202423936059a6−8602964295420312⋯60a5+28676547651401196943704554768a4+28676547651401132606232663362a3−86029642954203458458619477317a2+2867654765140125798828980231a+2867654765140125038610288890, 860296429542031501062567904a17−6617664842631771607303784a16+8602964295420315606769062190a15+2867654765140112703287136105a14−86029642954203164732765071253a13+2867654765140165185296219122a12+8602964295420352843821157892a11−28676547651401174088246478180a10+28676547651401310258984982784a9−28676547651401245384771343460a8−86029642954203140489231310788a7+86029642954203836260291526558a6−86029642954203739466483441962a5−86029642954203372905951531a4+86029642954203504251724689654a3−86029642954203275531828235359a2−86029642954203191930130488392a+86029642954203118307333344817
| sage: UK.fundamental_units()
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
|
Regulator: | | 13385.82469770262
|
|
s→1lim(s−1)ζK(s)=(≈(≈(w⋅∣D∣2r1⋅(2π)r2⋅R⋅h2⋅1944601194472652800000026⋅(2π)6⋅13385.82469770262⋅10.188998800336351
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
/* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
# self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 + 11*x^16 + 6*x^15 - 60*x^14 + 122*x^13 - 141*x^12 + 74*x^11 + 54*x^10 - 122*x^9 + 71*x^8 + 36*x^7 - 70*x^6 + 16*x^5 + 33*x^4 - 10*x^3 - 11*x^2 - 4*x + 1);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
C6×S3 (as 18T6):
sage: K.galois_group(type='pari')
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
Cycle type |
R |
36 |
R |
R |
63 |
29 |
63 |
62,32 |
63 |
36 |
62,32 |
62,32 |
63 |
63 |
36 |
62,32 |
62,32 |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
# to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for
p=7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
\\ to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for
p=7 in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
// to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for $p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
# to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for
p=7 in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
p | Label | Polynomial
| e |
f |
c |
Galois group |
Slope content |
2
| 2.3.2.6a1.1 | x6+2x4+4x3+x2+4x+5 | 2 | 3 | 6 | C6 | [2]3 |
2.6.2.12a1.1 | x12+2x10+2x9+x8+4x7+5x6+2x5+6x4+4x3+x2+4x+5 | 2 | 6 | 12 | C6×C2 | [2]6 |
5
| 5.6.1.0a1.1 | x6+x4+4x3+x2+2 | 1 | 6 | 0 | C6 | [ ]6 |
5.6.2.6a1.2 | x12+2x10+8x9+3x8+8x7+22x6+8x5+5x4+16x3+4x2+9 | 2 | 6 | 6 | C6×C2 | [ ]26 |
7
| 7.3.6.15a1.4 | x18+36x17+540x16+4344x15+20160x14+55296x13+98736x12+161280x11+238464x10+208640x9+334080x8+138240x7+280320x6+46080x5+138240x4+6144x3+36871x2+4117 | 6 | 3 | 15 | C6×C3 | [ ]63 |