Normalized defining polynomial
\( x^{18} + 2 x^{16} - 5 x^{15} - 3 x^{14} + 22 x^{13} - 23 x^{12} + 45 x^{11} + 117 x^{10} - 54 x^{9} + \cdots + 1 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(24496374598915344039936\) \(\medspace = 2^{18}\cdot 3^{9}\cdot 7^{15}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.53\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}7^{5/6}\approx 24.794421938893013$ | ||
Ramified primes: | \(2\), \(3\), \(7\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{21}) \) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{15}a^{15}+\frac{1}{15}a^{12}+\frac{2}{15}a^{11}-\frac{1}{15}a^{9}+\frac{2}{15}a^{8}-\frac{1}{15}a^{7}-\frac{4}{15}a^{6}+\frac{1}{3}a^{5}+\frac{2}{5}a^{4}+\frac{1}{15}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{1}{15}$, $\frac{1}{45}a^{16}+\frac{1}{45}a^{15}+\frac{1}{9}a^{14}-\frac{4}{45}a^{13}+\frac{1}{15}a^{12}+\frac{2}{45}a^{11}-\frac{2}{15}a^{10}+\frac{1}{45}a^{9}+\frac{1}{45}a^{8}+\frac{1}{3}a^{7}-\frac{4}{45}a^{6}+\frac{11}{45}a^{5}-\frac{2}{5}a^{4}-\frac{17}{45}a^{3}-\frac{2}{45}a^{2}+\frac{4}{9}a+\frac{4}{45}$, $\frac{1}{2115940095}a^{17}-\frac{5925712}{2115940095}a^{16}+\frac{4092269}{235104455}a^{15}+\frac{4842356}{51608295}a^{14}-\frac{47617868}{423188019}a^{13}-\frac{44599873}{2115940095}a^{12}+\frac{288638171}{2115940095}a^{11}-\frac{70675631}{2115940095}a^{10}+\frac{348914594}{2115940095}a^{9}+\frac{10156910}{423188019}a^{8}-\frac{397719853}{2115940095}a^{7}+\frac{294451567}{2115940095}a^{6}+\frac{193197044}{2115940095}a^{5}+\frac{757031191}{2115940095}a^{4}-\frac{501480082}{2115940095}a^{3}+\frac{137104358}{705313365}a^{2}-\frac{19550264}{705313365}a-\frac{960084101}{2115940095}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{63744436}{51608295}a^{17}+\frac{1235372}{5734255}a^{16}+\frac{26773421}{10321659}a^{15}-\frac{99072608}{17202765}a^{14}-\frac{45684901}{10321659}a^{13}+\frac{1331593691}{51608295}a^{12}-\frac{1218088481}{51608295}a^{11}+\frac{2710585009}{51608295}a^{10}+\frac{521724959}{3440553}a^{9}-\frac{1770948052}{51608295}a^{8}-\frac{3486078202}{51608295}a^{7}-\frac{647877538}{17202765}a^{6}+\frac{652938574}{51608295}a^{5}+\frac{482062310}{10321659}a^{4}-\frac{1143869446}{17202765}a^{3}+\frac{382829902}{51608295}a^{2}+\frac{917938082}{51608295}a-\frac{54358373}{10321659}$, $\frac{8514302777}{2115940095}a^{17}+\frac{664250977}{705313365}a^{16}+\frac{17611346813}{2115940095}a^{15}-\frac{104828857}{5734255}a^{14}-\frac{6819100838}{423188019}a^{13}+\frac{35573914241}{423188019}a^{12}-\frac{152352187441}{2115940095}a^{11}+\frac{347881373138}{2115940095}a^{10}+\frac{357658464254}{705313365}a^{9}-\frac{195966848513}{2115940095}a^{8}-\frac{512606263247}{2115940095}a^{7}-\frac{6808716326}{47020891}a^{6}+\frac{57536633213}{2115940095}a^{5}+\frac{337497017093}{2115940095}a^{4}-\frac{148557897626}{705313365}a^{3}+\frac{6462709912}{423188019}a^{2}+\frac{136931556667}{2115940095}a-\frac{33450999773}{2115940095}$, $\frac{2591329}{507785}a^{17}+\frac{5858929}{4570065}a^{16}+\frac{48067759}{4570065}a^{15}-\frac{2557994}{111465}a^{14}-\frac{96324619}{4570065}a^{13}+\frac{162685784}{1523355}a^{12}-\frac{411338893}{4570065}a^{11}+\frac{104928952}{507785}a^{10}+\frac{2962723453}{4570065}a^{9}-\frac{102135565}{914013}a^{8}-\frac{94298950}{304671}a^{7}-\frac{173365376}{914013}a^{6}+\frac{26355598}{914013}a^{5}+\frac{21137151}{101557}a^{4}-\frac{1209266327}{4570065}a^{3}+\frac{81716056}{4570065}a^{2}+\frac{74578126}{914013}a-\frac{89649209}{4570065}$, $\frac{1966926967}{705313365}a^{17}+\frac{512300221}{705313365}a^{16}+\frac{4040931836}{705313365}a^{15}-\frac{215413963}{17202765}a^{14}-\frac{1648673299}{141062673}a^{13}+\frac{41091409958}{705313365}a^{12}-\frac{2275790216}{47020891}a^{11}+\frac{78915795923}{705313365}a^{10}+\frac{83568282553}{235104455}a^{9}-\frac{41119326127}{705313365}a^{8}-\frac{24645137131}{141062673}a^{7}-\frac{75567765832}{705313365}a^{6}+\frac{10255383893}{705313365}a^{5}+\frac{79558081181}{705313365}a^{4}-\frac{6777283356}{47020891}a^{3}+\frac{5539174526}{705313365}a^{2}+\frac{6619739687}{141062673}a-\frac{2478614812}{235104455}$, $\frac{4475676353}{705313365}a^{17}+\frac{457757016}{235104455}a^{16}+\frac{3136213222}{235104455}a^{15}-\frac{157916889}{5734255}a^{14}-\frac{19297810531}{705313365}a^{13}+\frac{92529491912}{705313365}a^{12}-\frac{74982444016}{705313365}a^{11}+\frac{178984076783}{705313365}a^{10}+\frac{578977338572}{705313365}a^{9}-\frac{63522136433}{705313365}a^{8}-\frac{253756852193}{705313365}a^{7}-\frac{166182774551}{705313365}a^{6}+\frac{14882138831}{705313365}a^{5}+\frac{35059490878}{141062673}a^{4}-\frac{46373674532}{141062673}a^{3}+\frac{7739926742}{705313365}a^{2}+\frac{68859701458}{705313365}a-\frac{15360324626}{705313365}$, $\frac{3004478659}{2115940095}a^{17}+\frac{308078111}{2115940095}a^{16}+\frac{393263044}{141062673}a^{15}-\frac{355855846}{51608295}a^{14}-\frac{10914006106}{2115940095}a^{13}+\frac{65304743897}{2115940095}a^{12}-\frac{61463196814}{2115940095}a^{11}+\frac{126886758937}{2115940095}a^{10}+\frac{364239705848}{2115940095}a^{9}-\frac{129146557487}{2115940095}a^{8}-\frac{198198512404}{2115940095}a^{7}-\frac{102026474336}{2115940095}a^{6}+\frac{7684484272}{423188019}a^{5}+\frac{128839115929}{2115940095}a^{4}-\frac{172837065304}{2115940095}a^{3}+\frac{11102837834}{705313365}a^{2}+\frac{5650672446}{235104455}a-\frac{3152202202}{423188019}$, $\frac{457757016}{235104455}a^{17}+\frac{91457392}{141062673}a^{16}+\frac{2954604418}{705313365}a^{15}-\frac{143189792}{17202765}a^{14}-\frac{1978462618}{235104455}a^{13}+\frac{9319370701}{235104455}a^{12}-\frac{22421359102}{705313365}a^{11}+\frac{55323205271}{705313365}a^{10}+\frac{178164386629}{705313365}a^{9}-\frac{12070329131}{705313365}a^{8}-\frac{72193571138}{705313365}a^{7}-\frac{52253006464}{705313365}a^{6}+\frac{746076623}{705313365}a^{5}+\frac{50099237579}{705313365}a^{4}-\frac{68346571259}{705313365}a^{3}+\frac{1724556163}{705313365}a^{2}+\frac{20445086198}{705313365}a-\frac{4475676353}{705313365}$, $\frac{759373754}{235104455}a^{17}+\frac{1478577623}{2115940095}a^{16}+\frac{2838464380}{423188019}a^{15}-\frac{764257414}{51608295}a^{14}-\frac{5308032946}{423188019}a^{13}+\frac{47579377952}{705313365}a^{12}-\frac{124615431056}{2115940095}a^{11}+\frac{94230216118}{705313365}a^{10}+\frac{170724236056}{423188019}a^{9}-\frac{165899380057}{2115940095}a^{8}-\frac{134476965794}{705313365}a^{7}-\frac{240188508854}{2115940095}a^{6}+\frac{56247184864}{2115940095}a^{5}+\frac{17769560839}{141062673}a^{4}-\frac{363042914218}{2115940095}a^{3}+\frac{29102556092}{2115940095}a^{2}+\frac{107009322217}{2115940095}a-\frac{5265341594}{423188019}$, $\frac{174232294}{235104455}a^{17}+\frac{223941742}{2115940095}a^{16}+\frac{3190997461}{2115940095}a^{15}-\frac{181487669}{51608295}a^{14}-\frac{5713075216}{2115940095}a^{13}+\frac{742323469}{47020891}a^{12}-\frac{31094932669}{2115940095}a^{11}+\frac{4443427990}{141062673}a^{10}+\frac{191313053707}{2115940095}a^{9}-\frac{54460922204}{2115940095}a^{8}-\frac{31312126193}{705313365}a^{7}-\frac{52274753878}{2115940095}a^{6}+\frac{15919511378}{2115940095}a^{5}+\frac{3938817389}{141062673}a^{4}-\frac{89090324039}{2115940095}a^{3}+\frac{12565026523}{2115940095}a^{2}+\frac{24188759849}{2115940095}a-\frac{8501373086}{2115940095}$, $\frac{16542466664}{2115940095}a^{17}+\frac{4609842392}{2115940095}a^{16}+\frac{34658062954}{2115940095}a^{15}-\frac{1786111966}{51608295}a^{14}-\frac{4609585619}{141062673}a^{13}+\frac{342480834163}{2115940095}a^{12}-\frac{94631736167}{705313365}a^{11}+\frac{669188185436}{2115940095}a^{10}+\frac{2114260810496}{2115940095}a^{9}-\frac{18921582419}{141062673}a^{8}-\frac{957721065422}{2115940095}a^{7}-\frac{622317132362}{2115940095}a^{6}+\frac{7738324209}{235104455}a^{5}+\frac{651301739354}{2115940095}a^{4}-\frac{848231312368}{2115940095}a^{3}+\frac{40699174696}{2115940095}a^{2}+\frac{255564984857}{2115940095}a-\frac{20245518083}{705313365}$, $\frac{9669940978}{2115940095}a^{17}+\frac{1117519036}{705313365}a^{16}+\frac{20426170933}{2115940095}a^{15}-\frac{334521904}{17202765}a^{14}-\frac{43521937631}{2115940095}a^{13}+\frac{198422713694}{2115940095}a^{12}-\frac{154362867647}{2115940095}a^{11}+\frac{380602681138}{2115940095}a^{10}+\frac{28147671841}{47020891}a^{9}-\frac{90004421659}{2115940095}a^{8}-\frac{110626081418}{423188019}a^{7}-\frac{128553006893}{705313365}a^{6}+\frac{10641263491}{2115940095}a^{5}+\frac{382456164847}{2115940095}a^{4}-\frac{160937670961}{705313365}a^{3}-\frac{20904104}{2115940095}a^{2}+\frac{29894962549}{423188019}a-\frac{28863720118}{2115940095}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 14420.859848954282 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 14420.859848954282 \cdot 1}{2\cdot\sqrt{24496374598915344039936}}\cr\approx \mathstrut & 0.181413431094210 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 18T6):
A solvable group of order 36 |
The 18 conjugacy class representatives for $S_3 \times C_6$ |
Character table for $S_3 \times C_6$ |
Intermediate fields
\(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), 3.1.1176.1, 6.2.29042496.1, \(\Q(\zeta_{21})^+\), 9.3.1626379776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 12 sibling: | 12.0.1101670627147776.6 |
Degree 18 sibling: | 18.0.464523844246098375868416.1 |
Minimal sibling: | 12.0.1101670627147776.6 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{6}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{9}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
2.12.18.23 | $x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
\(3\) | 3.6.3.1 | $x^{6} + 18 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
3.6.3.1 | $x^{6} + 18 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
3.6.3.1 | $x^{6} + 18 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(7\) | 7.18.15.5 | $x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98757 x^{12} + 161784 x^{11} + 246024 x^{10} + 264920 x^{9} + 530640 x^{8} + 156384 x^{7} - 1885725 x^{6} - 6133212 x^{5} - 3645540 x^{4} + 5968464 x^{3} + 5011344 x^{2} + 1820448 x + 2358791$ | $6$ | $3$ | $15$ | $C_6 \times C_3$ | $[\ ]_{6}^{3}$ |