Properties

Label 18.6.244...936.1
Degree $18$
Signature $[6, 6]$
Discriminant $2.450\times 10^{22}$
Root discriminant \(17.53\)
Ramified primes $2,3,7$
Class number $1$
Class group trivial
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1)
 
gp: K = bnfinit(y^18 + 2*y^16 - 5*y^15 - 3*y^14 + 22*y^13 - 23*y^12 + 45*y^11 + 117*y^10 - 54*y^9 - 54*y^8 - 21*y^7 + 15*y^6 + 39*y^5 - 63*y^4 + 17*y^3 + 15*y^2 - 8*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1)
 

\( x^{18} + 2 x^{16} - 5 x^{15} - 3 x^{14} + 22 x^{13} - 23 x^{12} + 45 x^{11} + 117 x^{10} - 54 x^{9} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(24496374598915344039936\) \(\medspace = 2^{18}\cdot 3^{9}\cdot 7^{15}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.53\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}7^{5/6}\approx 24.794421938893013$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{21}) \)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{15}a^{15}+\frac{1}{15}a^{12}+\frac{2}{15}a^{11}-\frac{1}{15}a^{9}+\frac{2}{15}a^{8}-\frac{1}{15}a^{7}-\frac{4}{15}a^{6}+\frac{1}{3}a^{5}+\frac{2}{5}a^{4}+\frac{1}{15}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{1}{15}$, $\frac{1}{45}a^{16}+\frac{1}{45}a^{15}+\frac{1}{9}a^{14}-\frac{4}{45}a^{13}+\frac{1}{15}a^{12}+\frac{2}{45}a^{11}-\frac{2}{15}a^{10}+\frac{1}{45}a^{9}+\frac{1}{45}a^{8}+\frac{1}{3}a^{7}-\frac{4}{45}a^{6}+\frac{11}{45}a^{5}-\frac{2}{5}a^{4}-\frac{17}{45}a^{3}-\frac{2}{45}a^{2}+\frac{4}{9}a+\frac{4}{45}$, $\frac{1}{2115940095}a^{17}-\frac{5925712}{2115940095}a^{16}+\frac{4092269}{235104455}a^{15}+\frac{4842356}{51608295}a^{14}-\frac{47617868}{423188019}a^{13}-\frac{44599873}{2115940095}a^{12}+\frac{288638171}{2115940095}a^{11}-\frac{70675631}{2115940095}a^{10}+\frac{348914594}{2115940095}a^{9}+\frac{10156910}{423188019}a^{8}-\frac{397719853}{2115940095}a^{7}+\frac{294451567}{2115940095}a^{6}+\frac{193197044}{2115940095}a^{5}+\frac{757031191}{2115940095}a^{4}-\frac{501480082}{2115940095}a^{3}+\frac{137104358}{705313365}a^{2}-\frac{19550264}{705313365}a-\frac{960084101}{2115940095}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{63744436}{51608295}a^{17}+\frac{1235372}{5734255}a^{16}+\frac{26773421}{10321659}a^{15}-\frac{99072608}{17202765}a^{14}-\frac{45684901}{10321659}a^{13}+\frac{1331593691}{51608295}a^{12}-\frac{1218088481}{51608295}a^{11}+\frac{2710585009}{51608295}a^{10}+\frac{521724959}{3440553}a^{9}-\frac{1770948052}{51608295}a^{8}-\frac{3486078202}{51608295}a^{7}-\frac{647877538}{17202765}a^{6}+\frac{652938574}{51608295}a^{5}+\frac{482062310}{10321659}a^{4}-\frac{1143869446}{17202765}a^{3}+\frac{382829902}{51608295}a^{2}+\frac{917938082}{51608295}a-\frac{54358373}{10321659}$, $\frac{8514302777}{2115940095}a^{17}+\frac{664250977}{705313365}a^{16}+\frac{17611346813}{2115940095}a^{15}-\frac{104828857}{5734255}a^{14}-\frac{6819100838}{423188019}a^{13}+\frac{35573914241}{423188019}a^{12}-\frac{152352187441}{2115940095}a^{11}+\frac{347881373138}{2115940095}a^{10}+\frac{357658464254}{705313365}a^{9}-\frac{195966848513}{2115940095}a^{8}-\frac{512606263247}{2115940095}a^{7}-\frac{6808716326}{47020891}a^{6}+\frac{57536633213}{2115940095}a^{5}+\frac{337497017093}{2115940095}a^{4}-\frac{148557897626}{705313365}a^{3}+\frac{6462709912}{423188019}a^{2}+\frac{136931556667}{2115940095}a-\frac{33450999773}{2115940095}$, $\frac{2591329}{507785}a^{17}+\frac{5858929}{4570065}a^{16}+\frac{48067759}{4570065}a^{15}-\frac{2557994}{111465}a^{14}-\frac{96324619}{4570065}a^{13}+\frac{162685784}{1523355}a^{12}-\frac{411338893}{4570065}a^{11}+\frac{104928952}{507785}a^{10}+\frac{2962723453}{4570065}a^{9}-\frac{102135565}{914013}a^{8}-\frac{94298950}{304671}a^{7}-\frac{173365376}{914013}a^{6}+\frac{26355598}{914013}a^{5}+\frac{21137151}{101557}a^{4}-\frac{1209266327}{4570065}a^{3}+\frac{81716056}{4570065}a^{2}+\frac{74578126}{914013}a-\frac{89649209}{4570065}$, $\frac{1966926967}{705313365}a^{17}+\frac{512300221}{705313365}a^{16}+\frac{4040931836}{705313365}a^{15}-\frac{215413963}{17202765}a^{14}-\frac{1648673299}{141062673}a^{13}+\frac{41091409958}{705313365}a^{12}-\frac{2275790216}{47020891}a^{11}+\frac{78915795923}{705313365}a^{10}+\frac{83568282553}{235104455}a^{9}-\frac{41119326127}{705313365}a^{8}-\frac{24645137131}{141062673}a^{7}-\frac{75567765832}{705313365}a^{6}+\frac{10255383893}{705313365}a^{5}+\frac{79558081181}{705313365}a^{4}-\frac{6777283356}{47020891}a^{3}+\frac{5539174526}{705313365}a^{2}+\frac{6619739687}{141062673}a-\frac{2478614812}{235104455}$, $\frac{4475676353}{705313365}a^{17}+\frac{457757016}{235104455}a^{16}+\frac{3136213222}{235104455}a^{15}-\frac{157916889}{5734255}a^{14}-\frac{19297810531}{705313365}a^{13}+\frac{92529491912}{705313365}a^{12}-\frac{74982444016}{705313365}a^{11}+\frac{178984076783}{705313365}a^{10}+\frac{578977338572}{705313365}a^{9}-\frac{63522136433}{705313365}a^{8}-\frac{253756852193}{705313365}a^{7}-\frac{166182774551}{705313365}a^{6}+\frac{14882138831}{705313365}a^{5}+\frac{35059490878}{141062673}a^{4}-\frac{46373674532}{141062673}a^{3}+\frac{7739926742}{705313365}a^{2}+\frac{68859701458}{705313365}a-\frac{15360324626}{705313365}$, $\frac{3004478659}{2115940095}a^{17}+\frac{308078111}{2115940095}a^{16}+\frac{393263044}{141062673}a^{15}-\frac{355855846}{51608295}a^{14}-\frac{10914006106}{2115940095}a^{13}+\frac{65304743897}{2115940095}a^{12}-\frac{61463196814}{2115940095}a^{11}+\frac{126886758937}{2115940095}a^{10}+\frac{364239705848}{2115940095}a^{9}-\frac{129146557487}{2115940095}a^{8}-\frac{198198512404}{2115940095}a^{7}-\frac{102026474336}{2115940095}a^{6}+\frac{7684484272}{423188019}a^{5}+\frac{128839115929}{2115940095}a^{4}-\frac{172837065304}{2115940095}a^{3}+\frac{11102837834}{705313365}a^{2}+\frac{5650672446}{235104455}a-\frac{3152202202}{423188019}$, $\frac{457757016}{235104455}a^{17}+\frac{91457392}{141062673}a^{16}+\frac{2954604418}{705313365}a^{15}-\frac{143189792}{17202765}a^{14}-\frac{1978462618}{235104455}a^{13}+\frac{9319370701}{235104455}a^{12}-\frac{22421359102}{705313365}a^{11}+\frac{55323205271}{705313365}a^{10}+\frac{178164386629}{705313365}a^{9}-\frac{12070329131}{705313365}a^{8}-\frac{72193571138}{705313365}a^{7}-\frac{52253006464}{705313365}a^{6}+\frac{746076623}{705313365}a^{5}+\frac{50099237579}{705313365}a^{4}-\frac{68346571259}{705313365}a^{3}+\frac{1724556163}{705313365}a^{2}+\frac{20445086198}{705313365}a-\frac{4475676353}{705313365}$, $\frac{759373754}{235104455}a^{17}+\frac{1478577623}{2115940095}a^{16}+\frac{2838464380}{423188019}a^{15}-\frac{764257414}{51608295}a^{14}-\frac{5308032946}{423188019}a^{13}+\frac{47579377952}{705313365}a^{12}-\frac{124615431056}{2115940095}a^{11}+\frac{94230216118}{705313365}a^{10}+\frac{170724236056}{423188019}a^{9}-\frac{165899380057}{2115940095}a^{8}-\frac{134476965794}{705313365}a^{7}-\frac{240188508854}{2115940095}a^{6}+\frac{56247184864}{2115940095}a^{5}+\frac{17769560839}{141062673}a^{4}-\frac{363042914218}{2115940095}a^{3}+\frac{29102556092}{2115940095}a^{2}+\frac{107009322217}{2115940095}a-\frac{5265341594}{423188019}$, $\frac{174232294}{235104455}a^{17}+\frac{223941742}{2115940095}a^{16}+\frac{3190997461}{2115940095}a^{15}-\frac{181487669}{51608295}a^{14}-\frac{5713075216}{2115940095}a^{13}+\frac{742323469}{47020891}a^{12}-\frac{31094932669}{2115940095}a^{11}+\frac{4443427990}{141062673}a^{10}+\frac{191313053707}{2115940095}a^{9}-\frac{54460922204}{2115940095}a^{8}-\frac{31312126193}{705313365}a^{7}-\frac{52274753878}{2115940095}a^{6}+\frac{15919511378}{2115940095}a^{5}+\frac{3938817389}{141062673}a^{4}-\frac{89090324039}{2115940095}a^{3}+\frac{12565026523}{2115940095}a^{2}+\frac{24188759849}{2115940095}a-\frac{8501373086}{2115940095}$, $\frac{16542466664}{2115940095}a^{17}+\frac{4609842392}{2115940095}a^{16}+\frac{34658062954}{2115940095}a^{15}-\frac{1786111966}{51608295}a^{14}-\frac{4609585619}{141062673}a^{13}+\frac{342480834163}{2115940095}a^{12}-\frac{94631736167}{705313365}a^{11}+\frac{669188185436}{2115940095}a^{10}+\frac{2114260810496}{2115940095}a^{9}-\frac{18921582419}{141062673}a^{8}-\frac{957721065422}{2115940095}a^{7}-\frac{622317132362}{2115940095}a^{6}+\frac{7738324209}{235104455}a^{5}+\frac{651301739354}{2115940095}a^{4}-\frac{848231312368}{2115940095}a^{3}+\frac{40699174696}{2115940095}a^{2}+\frac{255564984857}{2115940095}a-\frac{20245518083}{705313365}$, $\frac{9669940978}{2115940095}a^{17}+\frac{1117519036}{705313365}a^{16}+\frac{20426170933}{2115940095}a^{15}-\frac{334521904}{17202765}a^{14}-\frac{43521937631}{2115940095}a^{13}+\frac{198422713694}{2115940095}a^{12}-\frac{154362867647}{2115940095}a^{11}+\frac{380602681138}{2115940095}a^{10}+\frac{28147671841}{47020891}a^{9}-\frac{90004421659}{2115940095}a^{8}-\frac{110626081418}{423188019}a^{7}-\frac{128553006893}{705313365}a^{6}+\frac{10641263491}{2115940095}a^{5}+\frac{382456164847}{2115940095}a^{4}-\frac{160937670961}{705313365}a^{3}-\frac{20904104}{2115940095}a^{2}+\frac{29894962549}{423188019}a-\frac{28863720118}{2115940095}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 14420.859848954282 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 14420.859848954282 \cdot 1}{2\cdot\sqrt{24496374598915344039936}}\cr\approx \mathstrut & 0.181413431094210 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 18T6):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), 3.1.1176.1, 6.2.29042496.1, \(\Q(\zeta_{21})^+\), 9.3.1626379776.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 12 sibling: 12.0.1101670627147776.6
Degree 18 sibling: 18.0.464523844246098375868416.1
Minimal sibling: 12.0.1101670627147776.6

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.3.0.1}{3} }^{6}$ R ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.2.0.1}{2} }^{9}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ ${\href{/padicField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.0.1$x^{6} + x^{4} + x^{3} + x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
2.12.18.23$x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
\(3\) Copy content Toggle raw display 3.6.3.1$x^{6} + 18 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.1$x^{6} + 18 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.1$x^{6} + 18 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(7\) Copy content Toggle raw display 7.18.15.5$x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98757 x^{12} + 161784 x^{11} + 246024 x^{10} + 264920 x^{9} + 530640 x^{8} + 156384 x^{7} - 1885725 x^{6} - 6133212 x^{5} - 3645540 x^{4} + 5968464 x^{3} + 5011344 x^{2} + 1820448 x + 2358791$$6$$3$$15$$C_6 \times C_3$$[\ ]_{6}^{3}$