Properties

Label 18.6.244...936.1
Degree 1818
Signature [6,6][6, 6]
Discriminant 2.450×10222.450\times 10^{22}
Root discriminant 17.5317.53
Ramified primes 2,3,72,3,7
Class number 11
Class group trivial
Galois group S3×C6S_3 \times C_6 (as 18T6)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1)
 
Copy content gp:K = bnfinit(y^18 + 2*y^16 - 5*y^15 - 3*y^14 + 22*y^13 - 23*y^12 + 45*y^11 + 117*y^10 - 54*y^9 - 54*y^8 - 21*y^7 + 15*y^6 + 39*y^5 - 63*y^4 + 17*y^3 + 15*y^2 - 8*y + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1)
 

x18+2x165x153x14+22x1323x12+45x11+117x1054x9++1 x^{18} + 2 x^{16} - 5 x^{15} - 3 x^{14} + 22 x^{13} - 23 x^{12} + 45 x^{11} + 117 x^{10} - 54 x^{9} + \cdots + 1 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  1818
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [6,6][6, 6]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   2449637459891534403993624496374598915344039936 =21839715\medspace = 2^{18}\cdot 3^{9}\cdot 7^{15} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  17.5317.53
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  23/231/275/624.7944219388930132^{3/2}3^{1/2}7^{5/6}\approx 24.794421938893013
Ramified primes:   22, 33, 77 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(21)\Q(\sqrt{21})
Aut(K/Q)\Aut(K/\Q):   C6C_6
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, 13a813a713a6+13a413a3+13a+13\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}, 13a9+13a713a6+13a513a3+13a213a+13\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}, 13a1013a6+13a413a313a213\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}, 13a1113a7+13a513a413a313a\frac{1}{3}a^{11}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a, 13a1213a713a513a313a2+13a+13\frac{1}{3}a^{12}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}, 13a1313a7+13a6+13a3+13a213a+13\frac{1}{3}a^{13}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}, 13a1413a613a413a213a+13\frac{1}{3}a^{14}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}, 115a15+115a12+215a11115a9+215a8115a7415a6+13a5+25a4+115a315a2+25a115\frac{1}{15}a^{15}+\frac{1}{15}a^{12}+\frac{2}{15}a^{11}-\frac{1}{15}a^{9}+\frac{2}{15}a^{8}-\frac{1}{15}a^{7}-\frac{4}{15}a^{6}+\frac{1}{3}a^{5}+\frac{2}{5}a^{4}+\frac{1}{15}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{1}{15}, 145a16+145a15+19a14445a13+115a12+245a11215a10+145a9+145a8+13a7445a6+1145a525a41745a3245a2+49a+445\frac{1}{45}a^{16}+\frac{1}{45}a^{15}+\frac{1}{9}a^{14}-\frac{4}{45}a^{13}+\frac{1}{15}a^{12}+\frac{2}{45}a^{11}-\frac{2}{15}a^{10}+\frac{1}{45}a^{9}+\frac{1}{45}a^{8}+\frac{1}{3}a^{7}-\frac{4}{45}a^{6}+\frac{11}{45}a^{5}-\frac{2}{5}a^{4}-\frac{17}{45}a^{3}-\frac{2}{45}a^{2}+\frac{4}{9}a+\frac{4}{45}, 12115940095a1759257122115940095a16+4092269235104455a15+484235651608295a1447617868423188019a13445998732115940095a12+2886381712115940095a11706756312115940095a10+3489145942115940095a9+10156910423188019a83977198532115940095a7+2944515672115940095a6+1931970442115940095a5+7570311912115940095a45014800822115940095a3+137104358705313365a219550264705313365a9600841012115940095\frac{1}{2115940095}a^{17}-\frac{5925712}{2115940095}a^{16}+\frac{4092269}{235104455}a^{15}+\frac{4842356}{51608295}a^{14}-\frac{47617868}{423188019}a^{13}-\frac{44599873}{2115940095}a^{12}+\frac{288638171}{2115940095}a^{11}-\frac{70675631}{2115940095}a^{10}+\frac{348914594}{2115940095}a^{9}+\frac{10156910}{423188019}a^{8}-\frac{397719853}{2115940095}a^{7}+\frac{294451567}{2115940095}a^{6}+\frac{193197044}{2115940095}a^{5}+\frac{757031191}{2115940095}a^{4}-\frac{501480082}{2115940095}a^{3}+\frac{137104358}{705313365}a^{2}-\frac{19550264}{705313365}a-\frac{960084101}{2115940095} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  C2C_{2}, which has order 22
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  1111
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   6374443651608295a17+12353725734255a16+2677342110321659a159907260817202765a144568490110321659a13+133159369151608295a12121808848151608295a11+271058500951608295a10+5217249593440553a9177094805251608295a8348607820251608295a764787753817202765a6+65293857451608295a5+48206231010321659a4114386944617202765a3+38282990251608295a2+91793808251608295a5435837310321659\frac{63744436}{51608295}a^{17}+\frac{1235372}{5734255}a^{16}+\frac{26773421}{10321659}a^{15}-\frac{99072608}{17202765}a^{14}-\frac{45684901}{10321659}a^{13}+\frac{1331593691}{51608295}a^{12}-\frac{1218088481}{51608295}a^{11}+\frac{2710585009}{51608295}a^{10}+\frac{521724959}{3440553}a^{9}-\frac{1770948052}{51608295}a^{8}-\frac{3486078202}{51608295}a^{7}-\frac{647877538}{17202765}a^{6}+\frac{652938574}{51608295}a^{5}+\frac{482062310}{10321659}a^{4}-\frac{1143869446}{17202765}a^{3}+\frac{382829902}{51608295}a^{2}+\frac{917938082}{51608295}a-\frac{54358373}{10321659}, 85143027772115940095a17+664250977705313365a16+176113468132115940095a151048288575734255a146819100838423188019a13+35573914241423188019a121523521874412115940095a11+3478813731382115940095a10+357658464254705313365a91959668485132115940095a85126062632472115940095a7680871632647020891a6+575366332132115940095a5+3374970170932115940095a4148557897626705313365a3+6462709912423188019a2+1369315566672115940095a334509997732115940095\frac{8514302777}{2115940095}a^{17}+\frac{664250977}{705313365}a^{16}+\frac{17611346813}{2115940095}a^{15}-\frac{104828857}{5734255}a^{14}-\frac{6819100838}{423188019}a^{13}+\frac{35573914241}{423188019}a^{12}-\frac{152352187441}{2115940095}a^{11}+\frac{347881373138}{2115940095}a^{10}+\frac{357658464254}{705313365}a^{9}-\frac{195966848513}{2115940095}a^{8}-\frac{512606263247}{2115940095}a^{7}-\frac{6808716326}{47020891}a^{6}+\frac{57536633213}{2115940095}a^{5}+\frac{337497017093}{2115940095}a^{4}-\frac{148557897626}{705313365}a^{3}+\frac{6462709912}{423188019}a^{2}+\frac{136931556667}{2115940095}a-\frac{33450999773}{2115940095}, 2591329507785a17+58589294570065a16+480677594570065a152557994111465a14963246194570065a13+1626857841523355a124113388934570065a11+104928952507785a10+29627234534570065a9102135565914013a894298950304671a7173365376914013a6+26355598914013a5+21137151101557a412092663274570065a3+817160564570065a2+74578126914013a896492094570065\frac{2591329}{507785}a^{17}+\frac{5858929}{4570065}a^{16}+\frac{48067759}{4570065}a^{15}-\frac{2557994}{111465}a^{14}-\frac{96324619}{4570065}a^{13}+\frac{162685784}{1523355}a^{12}-\frac{411338893}{4570065}a^{11}+\frac{104928952}{507785}a^{10}+\frac{2962723453}{4570065}a^{9}-\frac{102135565}{914013}a^{8}-\frac{94298950}{304671}a^{7}-\frac{173365376}{914013}a^{6}+\frac{26355598}{914013}a^{5}+\frac{21137151}{101557}a^{4}-\frac{1209266327}{4570065}a^{3}+\frac{81716056}{4570065}a^{2}+\frac{74578126}{914013}a-\frac{89649209}{4570065}, 1966926967705313365a17+512300221705313365a16+4040931836705313365a1521541396317202765a141648673299141062673a13+41091409958705313365a12227579021647020891a11+78915795923705313365a10+83568282553235104455a941119326127705313365a824645137131141062673a775567765832705313365a6+10255383893705313365a5+79558081181705313365a4677728335647020891a3+5539174526705313365a2+6619739687141062673a2478614812235104455\frac{1966926967}{705313365}a^{17}+\frac{512300221}{705313365}a^{16}+\frac{4040931836}{705313365}a^{15}-\frac{215413963}{17202765}a^{14}-\frac{1648673299}{141062673}a^{13}+\frac{41091409958}{705313365}a^{12}-\frac{2275790216}{47020891}a^{11}+\frac{78915795923}{705313365}a^{10}+\frac{83568282553}{235104455}a^{9}-\frac{41119326127}{705313365}a^{8}-\frac{24645137131}{141062673}a^{7}-\frac{75567765832}{705313365}a^{6}+\frac{10255383893}{705313365}a^{5}+\frac{79558081181}{705313365}a^{4}-\frac{6777283356}{47020891}a^{3}+\frac{5539174526}{705313365}a^{2}+\frac{6619739687}{141062673}a-\frac{2478614812}{235104455}, 4475676353705313365a17+457757016235104455a16+3136213222235104455a151579168895734255a1419297810531705313365a13+92529491912705313365a1274982444016705313365a11+178984076783705313365a10+578977338572705313365a963522136433705313365a8253756852193705313365a7166182774551705313365a6+14882138831705313365a5+35059490878141062673a446373674532141062673a3+7739926742705313365a2+68859701458705313365a15360324626705313365\frac{4475676353}{705313365}a^{17}+\frac{457757016}{235104455}a^{16}+\frac{3136213222}{235104455}a^{15}-\frac{157916889}{5734255}a^{14}-\frac{19297810531}{705313365}a^{13}+\frac{92529491912}{705313365}a^{12}-\frac{74982444016}{705313365}a^{11}+\frac{178984076783}{705313365}a^{10}+\frac{578977338572}{705313365}a^{9}-\frac{63522136433}{705313365}a^{8}-\frac{253756852193}{705313365}a^{7}-\frac{166182774551}{705313365}a^{6}+\frac{14882138831}{705313365}a^{5}+\frac{35059490878}{141062673}a^{4}-\frac{46373674532}{141062673}a^{3}+\frac{7739926742}{705313365}a^{2}+\frac{68859701458}{705313365}a-\frac{15360324626}{705313365}, 30044786592115940095a17+3080781112115940095a16+393263044141062673a1535585584651608295a14109140061062115940095a13+653047438972115940095a12614631968142115940095a11+1268867589372115940095a10+3642397058482115940095a91291465574872115940095a81981985124042115940095a71020264743362115940095a6+7684484272423188019a5+1288391159292115940095a41728370653042115940095a3+11102837834705313365a2+5650672446235104455a3152202202423188019\frac{3004478659}{2115940095}a^{17}+\frac{308078111}{2115940095}a^{16}+\frac{393263044}{141062673}a^{15}-\frac{355855846}{51608295}a^{14}-\frac{10914006106}{2115940095}a^{13}+\frac{65304743897}{2115940095}a^{12}-\frac{61463196814}{2115940095}a^{11}+\frac{126886758937}{2115940095}a^{10}+\frac{364239705848}{2115940095}a^{9}-\frac{129146557487}{2115940095}a^{8}-\frac{198198512404}{2115940095}a^{7}-\frac{102026474336}{2115940095}a^{6}+\frac{7684484272}{423188019}a^{5}+\frac{128839115929}{2115940095}a^{4}-\frac{172837065304}{2115940095}a^{3}+\frac{11102837834}{705313365}a^{2}+\frac{5650672446}{235104455}a-\frac{3152202202}{423188019}, 457757016235104455a17+91457392141062673a16+2954604418705313365a1514318979217202765a141978462618235104455a13+9319370701235104455a1222421359102705313365a11+55323205271705313365a10+178164386629705313365a912070329131705313365a872193571138705313365a752253006464705313365a6+746076623705313365a5+50099237579705313365a468346571259705313365a3+1724556163705313365a2+20445086198705313365a4475676353705313365\frac{457757016}{235104455}a^{17}+\frac{91457392}{141062673}a^{16}+\frac{2954604418}{705313365}a^{15}-\frac{143189792}{17202765}a^{14}-\frac{1978462618}{235104455}a^{13}+\frac{9319370701}{235104455}a^{12}-\frac{22421359102}{705313365}a^{11}+\frac{55323205271}{705313365}a^{10}+\frac{178164386629}{705313365}a^{9}-\frac{12070329131}{705313365}a^{8}-\frac{72193571138}{705313365}a^{7}-\frac{52253006464}{705313365}a^{6}+\frac{746076623}{705313365}a^{5}+\frac{50099237579}{705313365}a^{4}-\frac{68346571259}{705313365}a^{3}+\frac{1724556163}{705313365}a^{2}+\frac{20445086198}{705313365}a-\frac{4475676353}{705313365}, 759373754235104455a17+14785776232115940095a16+2838464380423188019a1576425741451608295a145308032946423188019a13+47579377952705313365a121246154310562115940095a11+94230216118705313365a10+170724236056423188019a91658993800572115940095a8134476965794705313365a72401885088542115940095a6+562471848642115940095a5+17769560839141062673a43630429142182115940095a3+291025560922115940095a2+1070093222172115940095a5265341594423188019\frac{759373754}{235104455}a^{17}+\frac{1478577623}{2115940095}a^{16}+\frac{2838464380}{423188019}a^{15}-\frac{764257414}{51608295}a^{14}-\frac{5308032946}{423188019}a^{13}+\frac{47579377952}{705313365}a^{12}-\frac{124615431056}{2115940095}a^{11}+\frac{94230216118}{705313365}a^{10}+\frac{170724236056}{423188019}a^{9}-\frac{165899380057}{2115940095}a^{8}-\frac{134476965794}{705313365}a^{7}-\frac{240188508854}{2115940095}a^{6}+\frac{56247184864}{2115940095}a^{5}+\frac{17769560839}{141062673}a^{4}-\frac{363042914218}{2115940095}a^{3}+\frac{29102556092}{2115940095}a^{2}+\frac{107009322217}{2115940095}a-\frac{5265341594}{423188019}, 174232294235104455a17+2239417422115940095a16+31909974612115940095a1518148766951608295a1457130752162115940095a13+74232346947020891a12310949326692115940095a11+4443427990141062673a10+1913130537072115940095a9544609222042115940095a831312126193705313365a7522747538782115940095a6+159195113782115940095a5+3938817389141062673a4890903240392115940095a3+125650265232115940095a2+241887598492115940095a85013730862115940095\frac{174232294}{235104455}a^{17}+\frac{223941742}{2115940095}a^{16}+\frac{3190997461}{2115940095}a^{15}-\frac{181487669}{51608295}a^{14}-\frac{5713075216}{2115940095}a^{13}+\frac{742323469}{47020891}a^{12}-\frac{31094932669}{2115940095}a^{11}+\frac{4443427990}{141062673}a^{10}+\frac{191313053707}{2115940095}a^{9}-\frac{54460922204}{2115940095}a^{8}-\frac{31312126193}{705313365}a^{7}-\frac{52274753878}{2115940095}a^{6}+\frac{15919511378}{2115940095}a^{5}+\frac{3938817389}{141062673}a^{4}-\frac{89090324039}{2115940095}a^{3}+\frac{12565026523}{2115940095}a^{2}+\frac{24188759849}{2115940095}a-\frac{8501373086}{2115940095}, 165424666642115940095a17+46098423922115940095a16+346580629542115940095a15178611196651608295a144609585619141062673a13+3424808341632115940095a1294631736167705313365a11+6691881854362115940095a10+21142608104962115940095a918921582419141062673a89577210654222115940095a76223171323622115940095a6+7738324209235104455a5+6513017393542115940095a48482313123682115940095a3+406991746962115940095a2+2555649848572115940095a20245518083705313365\frac{16542466664}{2115940095}a^{17}+\frac{4609842392}{2115940095}a^{16}+\frac{34658062954}{2115940095}a^{15}-\frac{1786111966}{51608295}a^{14}-\frac{4609585619}{141062673}a^{13}+\frac{342480834163}{2115940095}a^{12}-\frac{94631736167}{705313365}a^{11}+\frac{669188185436}{2115940095}a^{10}+\frac{2114260810496}{2115940095}a^{9}-\frac{18921582419}{141062673}a^{8}-\frac{957721065422}{2115940095}a^{7}-\frac{622317132362}{2115940095}a^{6}+\frac{7738324209}{235104455}a^{5}+\frac{651301739354}{2115940095}a^{4}-\frac{848231312368}{2115940095}a^{3}+\frac{40699174696}{2115940095}a^{2}+\frac{255564984857}{2115940095}a-\frac{20245518083}{705313365}, 96699409782115940095a17+1117519036705313365a16+204261709332115940095a1533452190417202765a14435219376312115940095a13+1984227136942115940095a121543628676472115940095a11+3806026811382115940095a10+2814767184147020891a9900044216592115940095a8110626081418423188019a7128553006893705313365a6+106412634912115940095a5+3824561648472115940095a4160937670961705313365a3209041042115940095a2+29894962549423188019a288637201182115940095\frac{9669940978}{2115940095}a^{17}+\frac{1117519036}{705313365}a^{16}+\frac{20426170933}{2115940095}a^{15}-\frac{334521904}{17202765}a^{14}-\frac{43521937631}{2115940095}a^{13}+\frac{198422713694}{2115940095}a^{12}-\frac{154362867647}{2115940095}a^{11}+\frac{380602681138}{2115940095}a^{10}+\frac{28147671841}{47020891}a^{9}-\frac{90004421659}{2115940095}a^{8}-\frac{110626081418}{423188019}a^{7}-\frac{128553006893}{705313365}a^{6}+\frac{10641263491}{2115940095}a^{5}+\frac{382456164847}{2115940095}a^{4}-\frac{160937670961}{705313365}a^{3}-\frac{20904104}{2115940095}a^{2}+\frac{29894962549}{423188019}a-\frac{28863720118}{2115940095} Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  14420.859848954282 14420.859848954282
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(26(2π)614420.8598489542821224496374598915344039936(0.181413431094210 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 14420.859848954282 \cdot 1}{2\cdot\sqrt{24496374598915344039936}}\cr\approx \mathstrut & 0.181413431094210 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 2*x^16 - 5*x^15 - 3*x^14 + 22*x^13 - 23*x^12 + 45*x^11 + 117*x^10 - 54*x^9 - 54*x^8 - 21*x^7 + 15*x^6 + 39*x^5 - 63*x^4 + 17*x^3 + 15*x^2 - 8*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C6×S3C_6\times S_3 (as 18T6):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for S3×C6S_3 \times C_6
Character table for S3×C6S_3 \times C_6

Intermediate fields

Q(21)\Q(\sqrt{21}) , Q(ζ7)+\Q(\zeta_{7})^+, 3.1.1176.1, 6.2.29042496.1, Q(ζ21)+\Q(\zeta_{21})^+, 9.3.1626379776.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 12 sibling: 12.0.1101670627147776.6
Degree 18 sibling: 18.0.464523844246098375868416.1
Minimal sibling: 12.0.1101670627147776.6

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R R 36{\href{/padicField/5.3.0.1}{3} }^{6} R 63{\href{/padicField/11.6.0.1}{6} }^{3} 29{\href{/padicField/13.2.0.1}{2} }^{9} 62,32{\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2} 63{\href{/padicField/19.6.0.1}{6} }^{3} 63{\href{/padicField/23.6.0.1}{6} }^{3} 63{\href{/padicField/29.6.0.1}{6} }^{3} 63{\href{/padicField/31.6.0.1}{6} }^{3} 62,32{\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2} 26,16{\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6} 26,16{\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6} 62,32{\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2} 63{\href{/padicField/53.6.0.1}{6} }^{3} 36{\href{/padicField/59.3.0.1}{3} }^{6}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.6.1.0a1.1x6+x4+x3+x+1x^{6} + x^{4} + x^{3} + x + 1116600C6C_6[ ]6[\ ]^{6}
2.6.2.18a1.17x12+2x10+2x9+x8+4x7+7x6+2x5+8x4+6x3+x2+6x+7x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 7 x^{6} + 2 x^{5} + 8 x^{4} + 6 x^{3} + x^{2} + 6 x + 722661818C6×C2C_6\times C_2[3]6[3]^{6}
33 Copy content Toggle raw display 3.3.2.3a1.1x6+4x4+2x3+4x2+7x+1x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1223333C6C_6[ ]23[\ ]_{2}^{3}
3.3.2.3a1.1x6+4x4+2x3+4x2+7x+1x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1223333C6C_6[ ]23[\ ]_{2}^{3}
3.3.2.3a1.1x6+4x4+2x3+4x2+7x+1x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1223333C6C_6[ ]23[\ ]_{2}^{3}
77 Copy content Toggle raw display 7.3.6.15a1.3x18+36x17+540x16+4344x15+20160x14+55296x13+98736x12+161280x11+238464x10+208640x9+334080x8+138240x7+280320x6+46080x5+138240x4+6144x3+36864x2+4103x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98736 x^{12} + 161280 x^{11} + 238464 x^{10} + 208640 x^{9} + 334080 x^{8} + 138240 x^{7} + 280320 x^{6} + 46080 x^{5} + 138240 x^{4} + 6144 x^{3} + 36864 x^{2} + 410366331515C6×C3C_6 \times C_3[ ]63[\ ]_{6}^{3}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)