Normalized defining polynomial
\( x^{18} - 36 x^{16} - 24 x^{15} + 432 x^{14} + 576 x^{13} - 2088 x^{12} - 3888 x^{11} + 4284 x^{10} + \cdots - 1088 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(95057738942888775593520682500096000\) \(\medspace = 2^{49}\cdot 3^{38}\cdot 5^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(87.74\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{10}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{2}$, $\frac{1}{18}a^{12}+\frac{1}{9}a^{9}-\frac{1}{3}a^{6}+\frac{4}{9}a^{3}+\frac{2}{9}$, $\frac{1}{18}a^{13}+\frac{1}{9}a^{10}-\frac{1}{3}a^{7}+\frac{4}{9}a^{4}+\frac{2}{9}a$, $\frac{1}{36}a^{14}-\frac{1}{9}a^{11}+\frac{1}{3}a^{8}+\frac{2}{9}a^{5}+\frac{5}{18}a^{2}$, $\frac{1}{72}a^{15}-\frac{1}{36}a^{13}-\frac{1}{6}a^{11}+\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{6}a^{7}-\frac{2}{9}a^{6}-\frac{2}{9}a^{4}+\frac{1}{12}a^{3}-\frac{1}{3}a^{2}-\frac{5}{18}a-\frac{1}{9}$, $\frac{1}{288}a^{16}+\frac{1}{144}a^{14}-\frac{1}{36}a^{13}-\frac{1}{72}a^{12}+\frac{1}{18}a^{11}-\frac{1}{9}a^{10}+\frac{1}{18}a^{9}+\frac{5}{24}a^{8}+\frac{1}{9}a^{7}-\frac{5}{12}a^{6}+\frac{1}{18}a^{5}+\frac{43}{144}a^{4}-\frac{1}{9}a^{3}+\frac{35}{72}a^{2}+\frac{4}{9}a+\frac{1}{9}$, $\frac{1}{51\!\cdots\!64}a^{17}-\frac{65\!\cdots\!39}{51\!\cdots\!64}a^{16}+\frac{52\!\cdots\!03}{25\!\cdots\!32}a^{15}-\frac{44\!\cdots\!81}{85\!\cdots\!44}a^{14}+\frac{31\!\cdots\!19}{12\!\cdots\!16}a^{13}+\frac{42\!\cdots\!31}{12\!\cdots\!16}a^{12}-\frac{19\!\cdots\!58}{16\!\cdots\!27}a^{11}-\frac{15\!\cdots\!63}{10\!\cdots\!18}a^{10}-\frac{55\!\cdots\!07}{42\!\cdots\!72}a^{9}-\frac{59\!\cdots\!89}{12\!\cdots\!16}a^{8}+\frac{14\!\cdots\!63}{64\!\cdots\!08}a^{7}+\frac{79\!\cdots\!03}{64\!\cdots\!08}a^{6}-\frac{10\!\cdots\!81}{28\!\cdots\!48}a^{5}-\frac{70\!\cdots\!97}{25\!\cdots\!32}a^{4}+\frac{25\!\cdots\!97}{12\!\cdots\!16}a^{3}-\frac{61\!\cdots\!97}{12\!\cdots\!16}a^{2}+\frac{40\!\cdots\!07}{10\!\cdots\!18}a-\frac{16\!\cdots\!68}{17\!\cdots\!03}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{49\!\cdots\!70}{17\!\cdots\!03}a^{17}+\frac{90\!\cdots\!10}{53\!\cdots\!09}a^{16}-\frac{15\!\cdots\!48}{16\!\cdots\!27}a^{15}-\frac{21\!\cdots\!37}{17\!\cdots\!03}a^{14}+\frac{18\!\cdots\!21}{17\!\cdots\!03}a^{13}+\frac{11\!\cdots\!97}{53\!\cdots\!09}a^{12}-\frac{68\!\cdots\!14}{17\!\cdots\!03}a^{11}-\frac{59\!\cdots\!06}{53\!\cdots\!09}a^{10}+\frac{62\!\cdots\!62}{16\!\cdots\!27}a^{9}+\frac{40\!\cdots\!76}{17\!\cdots\!03}a^{8}+\frac{57\!\cdots\!97}{53\!\cdots\!09}a^{7}+\frac{42\!\cdots\!77}{16\!\cdots\!27}a^{6}-\frac{46\!\cdots\!92}{17\!\cdots\!03}a^{5}-\frac{16\!\cdots\!00}{17\!\cdots\!03}a^{4}-\frac{28\!\cdots\!15}{17\!\cdots\!03}a^{3}+\frac{20\!\cdots\!40}{17\!\cdots\!03}a^{2}+\frac{63\!\cdots\!22}{53\!\cdots\!09}a+\frac{10\!\cdots\!37}{16\!\cdots\!27}$, $\frac{19\!\cdots\!66}{17\!\cdots\!03}a^{17}-\frac{60\!\cdots\!14}{53\!\cdots\!09}a^{16}-\frac{64\!\cdots\!40}{16\!\cdots\!27}a^{15}-\frac{40\!\cdots\!17}{17\!\cdots\!03}a^{14}+\frac{87\!\cdots\!19}{17\!\cdots\!03}a^{13}+\frac{31\!\cdots\!39}{53\!\cdots\!09}a^{12}-\frac{43\!\cdots\!98}{17\!\cdots\!03}a^{11}-\frac{21\!\cdots\!78}{53\!\cdots\!09}a^{10}+\frac{87\!\cdots\!58}{16\!\cdots\!27}a^{9}+\frac{19\!\cdots\!36}{17\!\cdots\!03}a^{8}-\frac{89\!\cdots\!57}{53\!\cdots\!09}a^{7}-\frac{95\!\cdots\!71}{16\!\cdots\!27}a^{6}-\frac{25\!\cdots\!96}{17\!\cdots\!03}a^{5}-\frac{63\!\cdots\!20}{17\!\cdots\!03}a^{4}+\frac{85\!\cdots\!05}{53\!\cdots\!09}a^{3}+\frac{12\!\cdots\!60}{17\!\cdots\!03}a^{2}-\frac{63\!\cdots\!34}{53\!\cdots\!09}a-\frac{65\!\cdots\!11}{16\!\cdots\!27}$, $\frac{31\!\cdots\!32}{17\!\cdots\!03}a^{17}+\frac{36\!\cdots\!98}{17\!\cdots\!03}a^{16}-\frac{12\!\cdots\!97}{21\!\cdots\!36}a^{15}-\frac{90\!\cdots\!44}{17\!\cdots\!03}a^{14}+\frac{22\!\cdots\!11}{35\!\cdots\!06}a^{13}+\frac{16\!\cdots\!19}{16\!\cdots\!27}a^{12}-\frac{40\!\cdots\!91}{17\!\cdots\!03}a^{11}-\frac{29\!\cdots\!00}{53\!\cdots\!09}a^{10}+\frac{35\!\cdots\!35}{16\!\cdots\!27}a^{9}+\frac{17\!\cdots\!32}{17\!\cdots\!03}a^{8}+\frac{13\!\cdots\!66}{17\!\cdots\!03}a^{7}+\frac{24\!\cdots\!48}{53\!\cdots\!09}a^{6}-\frac{29\!\cdots\!16}{17\!\cdots\!03}a^{5}-\frac{91\!\cdots\!52}{17\!\cdots\!03}a^{4}-\frac{12\!\cdots\!35}{32\!\cdots\!54}a^{3}+\frac{75\!\cdots\!92}{17\!\cdots\!03}a^{2}+\frac{77\!\cdots\!37}{53\!\cdots\!09}a+\frac{50\!\cdots\!53}{16\!\cdots\!27}$, $\frac{81\!\cdots\!47}{51\!\cdots\!64}a^{17}+\frac{16\!\cdots\!19}{17\!\cdots\!88}a^{16}-\frac{14\!\cdots\!59}{25\!\cdots\!32}a^{15}-\frac{18\!\cdots\!31}{25\!\cdots\!32}a^{14}+\frac{26\!\cdots\!83}{42\!\cdots\!72}a^{13}+\frac{15\!\cdots\!83}{12\!\cdots\!16}a^{12}-\frac{43\!\cdots\!81}{17\!\cdots\!03}a^{11}-\frac{73\!\cdots\!23}{10\!\cdots\!18}a^{10}+\frac{37\!\cdots\!53}{12\!\cdots\!16}a^{9}+\frac{19\!\cdots\!63}{12\!\cdots\!16}a^{8}+\frac{13\!\cdots\!99}{21\!\cdots\!36}a^{7}-\frac{12\!\cdots\!41}{64\!\cdots\!08}a^{6}-\frac{43\!\cdots\!03}{25\!\cdots\!32}a^{5}-\frac{46\!\cdots\!11}{85\!\cdots\!44}a^{4}-\frac{15\!\cdots\!77}{12\!\cdots\!16}a^{3}+\frac{33\!\cdots\!33}{42\!\cdots\!72}a^{2}+\frac{30\!\cdots\!65}{10\!\cdots\!18}a+\frac{90\!\cdots\!46}{16\!\cdots\!27}$, $\frac{36\!\cdots\!77}{12\!\cdots\!16}a^{17}-\frac{73\!\cdots\!23}{16\!\cdots\!27}a^{16}-\frac{65\!\cdots\!01}{64\!\cdots\!08}a^{15}+\frac{15\!\cdots\!44}{16\!\cdots\!27}a^{14}+\frac{21\!\cdots\!64}{16\!\cdots\!27}a^{13}-\frac{51\!\cdots\!74}{16\!\cdots\!27}a^{12}-\frac{14\!\cdots\!94}{16\!\cdots\!27}a^{11}-\frac{31\!\cdots\!55}{16\!\cdots\!27}a^{10}+\frac{98\!\cdots\!79}{32\!\cdots\!54}a^{9}+\frac{19\!\cdots\!75}{16\!\cdots\!27}a^{8}-\frac{76\!\cdots\!51}{16\!\cdots\!27}a^{7}-\frac{30\!\cdots\!17}{16\!\cdots\!27}a^{6}-\frac{11\!\cdots\!17}{64\!\cdots\!08}a^{5}-\frac{52\!\cdots\!99}{16\!\cdots\!27}a^{4}+\frac{58\!\cdots\!07}{32\!\cdots\!54}a^{3}+\frac{24\!\cdots\!62}{16\!\cdots\!27}a^{2}-\frac{41\!\cdots\!90}{16\!\cdots\!27}a-\frac{86\!\cdots\!27}{16\!\cdots\!27}$, $\frac{98\!\cdots\!87}{42\!\cdots\!72}a^{17}+\frac{46\!\cdots\!97}{51\!\cdots\!64}a^{16}-\frac{10\!\cdots\!79}{12\!\cdots\!16}a^{15}-\frac{22\!\cdots\!31}{25\!\cdots\!32}a^{14}+\frac{31\!\cdots\!71}{32\!\cdots\!54}a^{13}+\frac{22\!\cdots\!55}{12\!\cdots\!16}a^{12}-\frac{72\!\cdots\!68}{16\!\cdots\!27}a^{11}-\frac{18\!\cdots\!64}{16\!\cdots\!27}a^{10}+\frac{11\!\cdots\!69}{16\!\cdots\!27}a^{9}+\frac{42\!\cdots\!91}{14\!\cdots\!24}a^{8}+\frac{23\!\cdots\!05}{32\!\cdots\!54}a^{7}-\frac{11\!\cdots\!95}{64\!\cdots\!08}a^{6}-\frac{23\!\cdots\!59}{64\!\cdots\!08}a^{5}-\frac{22\!\cdots\!05}{25\!\cdots\!32}a^{4}-\frac{18\!\cdots\!37}{64\!\cdots\!08}a^{3}+\frac{22\!\cdots\!71}{12\!\cdots\!16}a^{2}+\frac{23\!\cdots\!75}{32\!\cdots\!54}a-\frac{45\!\cdots\!14}{16\!\cdots\!27}$, $\frac{70\!\cdots\!53}{17\!\cdots\!88}a^{17}-\frac{35\!\cdots\!69}{51\!\cdots\!64}a^{16}-\frac{43\!\cdots\!19}{25\!\cdots\!32}a^{15}+\frac{93\!\cdots\!33}{85\!\cdots\!44}a^{14}+\frac{33\!\cdots\!13}{12\!\cdots\!16}a^{13}+\frac{15\!\cdots\!69}{12\!\cdots\!16}a^{12}-\frac{32\!\cdots\!68}{17\!\cdots\!03}a^{11}-\frac{90\!\cdots\!57}{35\!\cdots\!06}a^{10}+\frac{56\!\cdots\!85}{12\!\cdots\!16}a^{9}+\frac{44\!\cdots\!19}{42\!\cdots\!72}a^{8}+\frac{19\!\cdots\!97}{64\!\cdots\!08}a^{7}-\frac{38\!\cdots\!75}{64\!\cdots\!08}a^{6}-\frac{15\!\cdots\!65}{85\!\cdots\!44}a^{5}-\frac{86\!\cdots\!67}{25\!\cdots\!32}a^{4}-\frac{30\!\cdots\!25}{12\!\cdots\!16}a^{3}+\frac{63\!\cdots\!65}{14\!\cdots\!24}a^{2}+\frac{17\!\cdots\!71}{10\!\cdots\!18}a+\frac{50\!\cdots\!10}{16\!\cdots\!27}$, $\frac{85\!\cdots\!13}{16\!\cdots\!27}a^{17}+\frac{89\!\cdots\!11}{51\!\cdots\!64}a^{16}-\frac{24\!\cdots\!27}{12\!\cdots\!16}a^{15}-\frac{48\!\cdots\!65}{25\!\cdots\!32}a^{14}+\frac{73\!\cdots\!65}{32\!\cdots\!54}a^{13}+\frac{49\!\cdots\!25}{12\!\cdots\!16}a^{12}-\frac{56\!\cdots\!03}{53\!\cdots\!09}a^{11}-\frac{39\!\cdots\!89}{16\!\cdots\!27}a^{10}+\frac{57\!\cdots\!23}{32\!\cdots\!54}a^{9}+\frac{84\!\cdots\!97}{12\!\cdots\!16}a^{8}+\frac{43\!\cdots\!21}{32\!\cdots\!54}a^{7}-\frac{23\!\cdots\!09}{64\!\cdots\!08}a^{6}-\frac{25\!\cdots\!93}{32\!\cdots\!54}a^{5}-\frac{49\!\cdots\!11}{25\!\cdots\!32}a^{4}+\frac{23\!\cdots\!43}{64\!\cdots\!08}a^{3}+\frac{54\!\cdots\!29}{14\!\cdots\!24}a^{2}+\frac{44\!\cdots\!63}{32\!\cdots\!54}a-\frac{91\!\cdots\!92}{16\!\cdots\!27}$, $\frac{30\!\cdots\!95}{64\!\cdots\!08}a^{17}+\frac{13\!\cdots\!73}{25\!\cdots\!32}a^{16}-\frac{26\!\cdots\!69}{16\!\cdots\!27}a^{15}-\frac{37\!\cdots\!15}{12\!\cdots\!16}a^{14}+\frac{29\!\cdots\!94}{16\!\cdots\!27}a^{13}+\frac{30\!\cdots\!23}{64\!\cdots\!08}a^{12}-\frac{97\!\cdots\!28}{16\!\cdots\!27}a^{11}-\frac{43\!\cdots\!90}{16\!\cdots\!27}a^{10}-\frac{40\!\cdots\!02}{16\!\cdots\!27}a^{9}+\frac{39\!\cdots\!95}{64\!\cdots\!08}a^{8}+\frac{88\!\cdots\!97}{16\!\cdots\!27}a^{7}-\frac{24\!\cdots\!57}{32\!\cdots\!54}a^{6}-\frac{26\!\cdots\!87}{32\!\cdots\!54}a^{5}-\frac{28\!\cdots\!49}{12\!\cdots\!16}a^{4}-\frac{22\!\cdots\!10}{16\!\cdots\!27}a^{3}+\frac{18\!\cdots\!87}{64\!\cdots\!08}a^{2}+\frac{54\!\cdots\!00}{16\!\cdots\!27}a+\frac{16\!\cdots\!89}{16\!\cdots\!27}$, $\frac{14\!\cdots\!19}{17\!\cdots\!88}a^{17}+\frac{17\!\cdots\!57}{12\!\cdots\!16}a^{16}-\frac{69\!\cdots\!99}{25\!\cdots\!32}a^{15}-\frac{11\!\cdots\!33}{17\!\cdots\!03}a^{14}+\frac{29\!\cdots\!71}{12\!\cdots\!16}a^{13}+\frac{13\!\cdots\!61}{16\!\cdots\!27}a^{12}-\frac{30\!\cdots\!56}{17\!\cdots\!03}a^{11}-\frac{90\!\cdots\!83}{32\!\cdots\!54}a^{10}-\frac{18\!\cdots\!49}{12\!\cdots\!16}a^{9}+\frac{33\!\cdots\!33}{10\!\cdots\!18}a^{8}+\frac{22\!\cdots\!97}{64\!\cdots\!08}a^{7}+\frac{14\!\cdots\!17}{32\!\cdots\!54}a^{6}+\frac{19\!\cdots\!59}{28\!\cdots\!48}a^{5}-\frac{12\!\cdots\!09}{64\!\cdots\!08}a^{4}-\frac{30\!\cdots\!13}{12\!\cdots\!16}a^{3}+\frac{33\!\cdots\!25}{35\!\cdots\!06}a^{2}-\frac{46\!\cdots\!32}{16\!\cdots\!27}a+\frac{82\!\cdots\!87}{16\!\cdots\!27}$, $\frac{47\!\cdots\!49}{53\!\cdots\!09}a^{17}+\frac{71\!\cdots\!29}{56\!\cdots\!96}a^{16}-\frac{11\!\cdots\!61}{42\!\cdots\!72}a^{15}-\frac{53\!\cdots\!09}{85\!\cdots\!44}a^{14}+\frac{39\!\cdots\!04}{17\!\cdots\!03}a^{13}+\frac{35\!\cdots\!69}{42\!\cdots\!72}a^{12}+\frac{17\!\cdots\!88}{17\!\cdots\!03}a^{11}-\frac{53\!\cdots\!96}{17\!\cdots\!03}a^{10}-\frac{39\!\cdots\!97}{10\!\cdots\!18}a^{9}+\frac{82\!\cdots\!77}{42\!\cdots\!72}a^{8}+\frac{31\!\cdots\!81}{35\!\cdots\!06}a^{7}+\frac{20\!\cdots\!83}{21\!\cdots\!36}a^{6}+\frac{41\!\cdots\!71}{10\!\cdots\!18}a^{5}-\frac{43\!\cdots\!93}{28\!\cdots\!48}a^{4}-\frac{90\!\cdots\!03}{21\!\cdots\!36}a^{3}-\frac{18\!\cdots\!65}{14\!\cdots\!24}a^{2}-\frac{84\!\cdots\!49}{35\!\cdots\!06}a-\frac{37\!\cdots\!02}{53\!\cdots\!09}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 484266827745 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 484266827745 \cdot 1}{2\cdot\sqrt{95057738942888775593520682500096000}}\cr\approx \mathstrut & 3.09257449197299 \end{aligned}\] (assuming GRH)
Galois group
$C_3^6:(C_2^3:S_4)$ (as 18T822):
A solvable group of order 139968 |
The 93 conjugacy class representatives for $C_3^6:(C_2^3:S_4)$ |
Character table for $C_3^6:(C_2^3:S_4)$ |
Intermediate fields
3.1.216.1, 6.2.11943936.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 sibling: | data not computed |
Degree 24 sibling: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.11.11 | $x^{4} + 10$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
2.12.35.980 | $x^{12} + 12 x^{6} + 8 x^{3} + 10$ | $12$ | $1$ | $35$ | 12T28 | $[2, 3, 4]_{3}^{2}$ | |
\(3\) | 3.9.19.12 | $x^{9} + 9 x^{6} + 18 x^{5} + 6 x^{3} + 9 x^{2} + 21$ | $9$ | $1$ | $19$ | $C_3 \wr S_3 $ | $[3/2, 2, 5/2, 8/3]_{2}$ |
3.9.19.28 | $x^{9} + 9 x^{6} + 18 x^{5} + 9 x^{4} + 15 x^{3} + 9 x^{2} + 3$ | $9$ | $1$ | $19$ | $C_3 \wr S_3 $ | $[3/2, 2, 5/2, 8/3]_{2}$ | |
\(5\) | 5.3.0.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
5.6.3.2 | $x^{6} + 75 x^{2} - 375$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
5.9.0.1 | $x^{9} + 2 x^{3} + x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ |