Properties

Label 20.2.217...704.1
Degree $20$
Signature $[2, 9]$
Discriminant $-2.175\times 10^{36}$
Root discriminant \(65.60\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{20}$ (as 20T1117)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x + 2)
 
gp: K = bnfinit(y^20 - 4*y + 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 4*x + 2);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 4*x + 2)
 

\( x^{20} - 4x + 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-2175240440437716006500319000164040704\) \(\medspace = -\,2^{40}\cdot 31\cdot 127\cdot 137\cdot 173\cdot 1073393\cdot 19752251119\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(65.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(31\), \(127\), \(137\), \(173\), \(1073393\), \(19752251119\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-19783\!\cdots\!23979}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $a^{19}+a^{18}-a^{17}+a^{15}-a^{14}+2a^{12}-a^{11}-a^{10}+2a^{9}-a^{8}-2a^{7}+3a^{6}-3a^{4}+3a^{3}+a^{2}-4a-1$, $9a^{19}+5a^{18}+2a^{17}+2a^{16}+a^{10}-a^{9}-a^{6}+a^{5}-a-37$, $4a^{19}+a^{18}+a^{17}+4a^{16}-a^{14}-3a^{13}+3a^{12}+2a^{11}+a^{10}-6a^{9}+a^{8}+2a^{7}+5a^{6}-4a^{5}-5a^{4}+a^{3}+7a^{2}+2a-23$, $6a^{19}+6a^{18}+6a^{17}-a^{16}-3a^{15}+4a^{14}+3a^{13}-5a^{12}-2a^{11}+7a^{10}+a^{9}-9a^{8}+a^{7}+11a^{6}-3a^{5}-12a^{4}+5a^{3}+14a^{2}-9a-37$, $a^{17}+2a^{16}+2a^{15}+3a^{14}+2a^{13}+3a^{12}+2a^{11}+a^{9}-2a^{8}-3a^{7}-2a^{6}-4a^{5}-5a^{4}-2a^{3}-3a^{2}-3a+3$, $a^{19}+3a^{18}+3a^{16}-a^{15}+3a^{14}-a^{13}+4a^{12}-a^{11}+3a^{10}-a^{9}+4a^{8}+2a^{6}+a^{5}+a^{4}+4a^{3}-a^{2}+6a-9$, $a^{19}-2a^{18}+3a^{17}-4a^{16}+5a^{15}-6a^{14}+7a^{13}-8a^{12}+8a^{11}-8a^{10}+7a^{9}-7a^{8}+6a^{7}-6a^{6}+4a^{5}-3a^{4}+a^{3}-2a+1$, $a^{19}-2a^{17}+5a^{15}+4a^{14}+3a^{13}+4a^{12}-2a^{11}-7a^{10}-4a^{9}-4a^{8}-4a^{7}+6a^{6}+9a^{5}+3a^{4}+6a^{3}+2a^{2}-12a-13$, $5a^{19}+3a^{18}+2a^{17}+a^{16}-a^{15}+a^{13}+a^{12}-2a^{10}+a^{9}+a^{8}+a^{7}-a^{6}-3a^{5}+3a^{4}+3a^{2}-5a-19$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 34634743019.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{9}\cdot 34634743019.0 \cdot 1}{2\cdot\sqrt{2175240440437716006500319000164040704}}\cr\approx \mathstrut & 0.716815101340 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x + 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 4*x + 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 4*x + 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x + 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{20}$ (as 20T1117):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 2432902008176640000
The 627 conjugacy class representatives for $S_{20}$
Character table for $S_{20}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 40 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $15{,}\,{\href{/padicField/3.5.0.1}{5} }$ ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $20$ ${\href{/padicField/23.13.0.1}{13} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ $16{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ R ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ $15{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ $18{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ $20$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$20$$1$$40$
\(31\) Copy content Toggle raw display 31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.5.0.1$x^{5} + 7 x + 28$$1$$5$$0$$C_5$$[\ ]^{5}$
31.11.0.1$x^{11} + 20 x + 28$$1$$11$$0$$C_{11}$$[\ ]^{11}$
\(127\) Copy content Toggle raw display $\Q_{127}$$x + 124$$1$$1$$0$Trivial$[\ ]$
127.2.1.1$x^{2} + 381$$2$$1$$1$$C_2$$[\ ]_{2}$
127.3.0.1$x^{3} + 3 x + 124$$1$$3$$0$$C_3$$[\ ]^{3}$
127.3.0.1$x^{3} + 3 x + 124$$1$$3$$0$$C_3$$[\ ]^{3}$
127.11.0.1$x^{11} + 11 x + 124$$1$$11$$0$$C_{11}$$[\ ]^{11}$
\(137\) Copy content Toggle raw display $\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$
137.6.0.1$x^{6} + x^{4} + 116 x^{3} + 102 x^{2} + 3 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
137.11.0.1$x^{11} + x + 134$$1$$11$$0$$C_{11}$$[\ ]^{11}$
\(173\) Copy content Toggle raw display $\Q_{173}$$x + 171$$1$$1$$0$Trivial$[\ ]$
$\Q_{173}$$x + 171$$1$$1$$0$Trivial$[\ ]$
173.2.1.2$x^{2} + 346$$2$$1$$1$$C_2$$[\ ]_{2}$
173.7.0.1$x^{7} + 5 x + 171$$1$$7$$0$$C_7$$[\ ]^{7}$
173.9.0.1$x^{9} + 56 x^{2} + 104 x + 171$$1$$9$$0$$C_9$$[\ ]^{9}$
\(1073393\) Copy content Toggle raw display $\Q_{1073393}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1073393}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1073393}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $12$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(19752251119\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $18$$1$$18$$0$$C_{18}$$[\ ]^{18}$