Normalized defining polynomial
\( x^{24} - 4 x^{23} + 73 x^{22} - 64 x^{21} + 2595 x^{20} + 194 x^{19} + 64108 x^{18} + 69106 x^{17} + \cdots + 10201 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(419626218829023046958936634321984000000000000000000\) \(\medspace = 2^{24}\cdot 3^{12}\cdot 5^{18}\cdot 37^{16}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(128.61\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{1/2}5^{3/4}37^{2/3}\approx 128.61331797130134$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $24$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(2220=2^{2}\cdot 3\cdot 5\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{2220}(1,·)$, $\chi_{2220}(1987,·)$, $\chi_{2220}(581,·)$, $\chi_{2220}(1543,·)$, $\chi_{2220}(1481,·)$, $\chi_{2220}(269,·)$, $\chi_{2220}(1247,·)$, $\chi_{2220}(889,·)$, $\chi_{2220}(787,·)$, $\chi_{2220}(149,·)$, $\chi_{2220}(1601,·)$, $\chi_{2220}(343,·)$, $\chi_{2220}(667,·)$, $\chi_{2220}(1823,·)$, $\chi_{2220}(2209,·)$, $\chi_{2220}(803,·)$, $\chi_{2220}(1703,·)$, $\chi_{2220}(1321,·)$, $\chi_{2220}(47,·)$, $\chi_{2220}(1009,·)$, $\chi_{2220}(2147,·)$, $\chi_{2220}(121,·)$, $\chi_{2220}(223,·)$, $\chi_{2220}(1469,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{2048}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3873479}a^{20}-\frac{426662}{3873479}a^{19}-\frac{171623}{3873479}a^{18}-\frac{815012}{3873479}a^{17}-\frac{274941}{3873479}a^{16}-\frac{1646692}{3873479}a^{15}+\frac{329458}{3873479}a^{14}-\frac{292666}{3873479}a^{13}-\frac{990504}{3873479}a^{12}-\frac{1721268}{3873479}a^{11}-\frac{1289875}{3873479}a^{10}-\frac{1196948}{3873479}a^{9}-\frac{1185441}{3873479}a^{8}+\frac{676018}{3873479}a^{7}+\frac{1745033}{3873479}a^{6}+\frac{484759}{3873479}a^{5}-\frac{1934343}{3873479}a^{4}-\frac{714317}{3873479}a^{3}-\frac{1734239}{3873479}a^{2}+\frac{952024}{3873479}a+\frac{954050}{3873479}$, $\frac{1}{42608269}a^{21}+\frac{3}{42608269}a^{20}-\frac{15515206}{42608269}a^{19}+\frac{9525146}{42608269}a^{18}+\frac{15827741}{42608269}a^{17}-\frac{1036942}{42608269}a^{16}+\frac{20969609}{42608269}a^{15}-\frac{648006}{42608269}a^{14}+\frac{21254003}{42608269}a^{13}-\frac{18551528}{42608269}a^{12}-\frac{13850090}{42608269}a^{11}-\frac{517362}{3873479}a^{10}-\frac{13659022}{42608269}a^{9}+\frac{9506094}{42608269}a^{8}-\frac{11395690}{42608269}a^{7}-\frac{11270197}{42608269}a^{6}+\frac{3353187}{42608269}a^{5}+\frac{5000118}{42608269}a^{4}+\frac{20518508}{42608269}a^{3}-\frac{14551894}{42608269}a^{2}-\frac{7721762}{42608269}a+\frac{3582098}{42608269}$, $\frac{1}{10\!\cdots\!09}a^{22}+\frac{483034}{10\!\cdots\!09}a^{21}-\frac{1932079}{10\!\cdots\!09}a^{20}+\frac{331980108675750}{10\!\cdots\!09}a^{19}-\frac{253122061130618}{10\!\cdots\!09}a^{18}+\frac{40962040199483}{95047663984219}a^{17}+\frac{157064864270727}{10\!\cdots\!09}a^{16}+\frac{510147534721531}{10\!\cdots\!09}a^{15}-\frac{208787344468233}{10\!\cdots\!09}a^{14}-\frac{412671397691846}{10\!\cdots\!09}a^{13}-\frac{492431761015794}{10\!\cdots\!09}a^{12}+\frac{104916675136604}{10\!\cdots\!09}a^{11}+\frac{86033227560090}{10\!\cdots\!09}a^{10}+\frac{398643121378322}{10\!\cdots\!09}a^{9}-\frac{387238828238726}{10\!\cdots\!09}a^{8}+\frac{434195094898779}{10\!\cdots\!09}a^{7}-\frac{387059375965223}{10\!\cdots\!09}a^{6}+\frac{13284394323338}{95047663984219}a^{5}-\frac{290858442627998}{10\!\cdots\!09}a^{4}+\frac{32807549363200}{10\!\cdots\!09}a^{3}+\frac{288468795213567}{10\!\cdots\!09}a^{2}+\frac{310437901499612}{10\!\cdots\!09}a-\frac{238476642762471}{10\!\cdots\!09}$, $\frac{1}{28\!\cdots\!91}a^{23}-\frac{10\!\cdots\!20}{28\!\cdots\!91}a^{22}-\frac{11\!\cdots\!22}{26\!\cdots\!81}a^{21}+\frac{91\!\cdots\!05}{26\!\cdots\!81}a^{20}+\frac{56\!\cdots\!63}{28\!\cdots\!91}a^{19}+\frac{12\!\cdots\!65}{28\!\cdots\!91}a^{18}+\frac{12\!\cdots\!33}{28\!\cdots\!91}a^{17}+\frac{48\!\cdots\!65}{28\!\cdots\!91}a^{16}+\frac{36\!\cdots\!53}{28\!\cdots\!91}a^{15}+\frac{90\!\cdots\!04}{28\!\cdots\!91}a^{14}+\frac{50\!\cdots\!42}{28\!\cdots\!91}a^{13}+\frac{12\!\cdots\!72}{28\!\cdots\!91}a^{12}-\frac{69\!\cdots\!17}{26\!\cdots\!81}a^{11}+\frac{46\!\cdots\!53}{28\!\cdots\!91}a^{10}-\frac{12\!\cdots\!86}{28\!\cdots\!91}a^{9}+\frac{19\!\cdots\!29}{28\!\cdots\!91}a^{8}+\frac{96\!\cdots\!13}{28\!\cdots\!91}a^{7}+\frac{35\!\cdots\!14}{28\!\cdots\!91}a^{6}+\frac{24\!\cdots\!17}{28\!\cdots\!91}a^{5}-\frac{84\!\cdots\!63}{28\!\cdots\!91}a^{4}+\frac{10\!\cdots\!31}{26\!\cdots\!81}a^{3}+\frac{44\!\cdots\!81}{28\!\cdots\!91}a^{2}+\frac{36\!\cdots\!50}{28\!\cdots\!91}a-\frac{10\!\cdots\!53}{28\!\cdots\!91}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{190554}$, which has order $190554$ (assuming GRH)
Relative class number: $190554$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{5333711474796986527473876296936428226681363331703891345077052719802}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{23} - \frac{21249630331823656869535865652234681130204018129596252525354818571542}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{22} + \frac{388990503066773194557329682623015796703320867483885757845012402254124}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{21} - \frac{335018674142527050334797482982510437987243540301471651672409830055584}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{20} + \frac{13833372486585686700836838581706151800472084581505319586574482917573294}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{19} + \frac{114340696593885321411197182200277081662589504747749666466537216859228}{273787418211032701412144903335193072248204310819114201712280612690199699} a^{18} + \frac{341873583263865357020491128770380529465044245869151851232483126920315500}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{17} + \frac{374048477128069025523274212158608216568671089217862104687378309877446902}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{16} + \frac{5596802580811050070727804033717413430264038009577162307480598945495415928}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{15} + \frac{6676784378756137907854578769543779349820929119398800758115490488552442629}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{14} + \frac{60375061518650791123239933148883131754577844080134183203925752868458908704}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{13} + \frac{78638751216397208293750662189348665492313964289310756591664247103181969687}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{12} + \frac{448368509897513590688132492409556266051061116539336320603930986785852463178}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{11} + \frac{474971303115522137600351395631238765252511537595041742282083813341124580703}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{10} + \frac{2012632084770214137588535016325080832314870860985888742199218830951910712018}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{9} + \frac{1939891633502600968818101603495971065087492263053426789764590833204060762649}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{8} + \frac{5819270695414828138522659692503792835063437211040188166004020159494972146596}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{7} + \frac{3098543009122888404161888254023827793505376324621441856141813445787391198805}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{6} + \frac{4518781535084015025394447007431293845518925313427347209105054396236858488240}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{5} + \frac{896403247094331038765288227122512793117045903132851151750556998066954331553}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{4} + \frac{207457407809495231231177942817866494744001333530907847361973153846213438526}{273787418211032701412144903335193072248204310819114201712280612690199699} a^{3} + \frac{567878285154797037148074276763533098892716924221555954423286846049801651297}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{2} + \frac{157504172178439878738156693944165207099561400079997365342552054696503255058}{3011661600321359715533593936687123794730247419010256218835086739592196689} a + \frac{1944194576605187982023222186809405108697005668711257786399066037825230}{29818431686350096193401920165219047472576707118913427909258284550417789} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{68\!\cdots\!02}{27\!\cdots\!69}a^{23}-\frac{29\!\cdots\!75}{27\!\cdots\!69}a^{22}+\frac{50\!\cdots\!54}{27\!\cdots\!69}a^{21}-\frac{57\!\cdots\!81}{27\!\cdots\!69}a^{20}+\frac{17\!\cdots\!58}{27\!\cdots\!69}a^{19}-\frac{37\!\cdots\!86}{27\!\cdots\!69}a^{18}+\frac{43\!\cdots\!90}{27\!\cdots\!69}a^{17}+\frac{34\!\cdots\!27}{27\!\cdots\!69}a^{16}+\frac{70\!\cdots\!70}{27\!\cdots\!69}a^{15}+\frac{63\!\cdots\!35}{27\!\cdots\!69}a^{14}+\frac{74\!\cdots\!36}{27\!\cdots\!69}a^{13}+\frac{77\!\cdots\!35}{27\!\cdots\!69}a^{12}+\frac{54\!\cdots\!20}{27\!\cdots\!69}a^{11}+\frac{43\!\cdots\!19}{27\!\cdots\!69}a^{10}+\frac{23\!\cdots\!10}{27\!\cdots\!69}a^{9}+\frac{17\!\cdots\!84}{27\!\cdots\!69}a^{8}+\frac{67\!\cdots\!54}{27\!\cdots\!69}a^{7}+\frac{17\!\cdots\!26}{27\!\cdots\!69}a^{6}+\frac{46\!\cdots\!30}{27\!\cdots\!69}a^{5}-\frac{48\!\cdots\!34}{25\!\cdots\!79}a^{4}+\frac{25\!\cdots\!16}{27\!\cdots\!69}a^{3}-\frac{13\!\cdots\!44}{27\!\cdots\!69}a^{2}+\frac{23\!\cdots\!16}{27\!\cdots\!69}a-\frac{45\!\cdots\!79}{27\!\cdots\!69}$, $\frac{18\!\cdots\!36}{56\!\cdots\!21}a^{23}-\frac{78\!\cdots\!59}{56\!\cdots\!21}a^{22}+\frac{14\!\cdots\!44}{62\!\cdots\!31}a^{21}-\frac{17\!\cdots\!93}{62\!\cdots\!31}a^{20}+\frac{52\!\cdots\!56}{62\!\cdots\!31}a^{19}-\frac{11\!\cdots\!17}{62\!\cdots\!31}a^{18}+\frac{12\!\cdots\!70}{62\!\cdots\!31}a^{17}+\frac{10\!\cdots\!91}{62\!\cdots\!31}a^{16}+\frac{20\!\cdots\!37}{62\!\cdots\!31}a^{15}+\frac{18\!\cdots\!99}{62\!\cdots\!31}a^{14}+\frac{21\!\cdots\!93}{62\!\cdots\!31}a^{13}+\frac{22\!\cdots\!05}{62\!\cdots\!31}a^{12}+\frac{16\!\cdots\!17}{62\!\cdots\!31}a^{11}+\frac{11\!\cdots\!95}{56\!\cdots\!21}a^{10}+\frac{70\!\cdots\!61}{62\!\cdots\!31}a^{9}+\frac{50\!\cdots\!34}{62\!\cdots\!31}a^{8}+\frac{19\!\cdots\!77}{62\!\cdots\!31}a^{7}+\frac{51\!\cdots\!52}{62\!\cdots\!31}a^{6}+\frac{13\!\cdots\!19}{62\!\cdots\!31}a^{5}-\frac{15\!\cdots\!46}{62\!\cdots\!31}a^{4}+\frac{75\!\cdots\!67}{62\!\cdots\!31}a^{3}-\frac{38\!\cdots\!78}{62\!\cdots\!31}a^{2}+\frac{69\!\cdots\!77}{62\!\cdots\!31}a+\frac{34\!\cdots\!02}{62\!\cdots\!31}$, $\frac{14\!\cdots\!77}{26\!\cdots\!81}a^{23}-\frac{63\!\cdots\!14}{28\!\cdots\!91}a^{22}+\frac{11\!\cdots\!67}{28\!\cdots\!91}a^{21}-\frac{10\!\cdots\!39}{28\!\cdots\!91}a^{20}+\frac{41\!\cdots\!64}{28\!\cdots\!91}a^{19}+\frac{40\!\cdots\!81}{28\!\cdots\!91}a^{18}+\frac{10\!\cdots\!85}{28\!\cdots\!91}a^{17}+\frac{11\!\cdots\!77}{28\!\cdots\!91}a^{16}+\frac{15\!\cdots\!75}{26\!\cdots\!81}a^{15}+\frac{20\!\cdots\!37}{28\!\cdots\!91}a^{14}+\frac{18\!\cdots\!89}{28\!\cdots\!91}a^{13}+\frac{23\!\cdots\!51}{28\!\cdots\!91}a^{12}+\frac{13\!\cdots\!79}{28\!\cdots\!91}a^{11}+\frac{14\!\cdots\!07}{28\!\cdots\!91}a^{10}+\frac{60\!\cdots\!74}{28\!\cdots\!91}a^{9}+\frac{58\!\cdots\!69}{28\!\cdots\!91}a^{8}+\frac{17\!\cdots\!28}{28\!\cdots\!91}a^{7}+\frac{94\!\cdots\!60}{28\!\cdots\!91}a^{6}+\frac{13\!\cdots\!46}{28\!\cdots\!91}a^{5}+\frac{28\!\cdots\!12}{28\!\cdots\!91}a^{4}+\frac{69\!\cdots\!46}{28\!\cdots\!91}a^{3}+\frac{17\!\cdots\!36}{28\!\cdots\!91}a^{2}+\frac{52\!\cdots\!35}{28\!\cdots\!91}a+\frac{59\!\cdots\!34}{28\!\cdots\!91}$, $\frac{83\!\cdots\!92}{28\!\cdots\!91}a^{23}-\frac{32\!\cdots\!22}{28\!\cdots\!91}a^{22}+\frac{60\!\cdots\!34}{28\!\cdots\!91}a^{21}-\frac{45\!\cdots\!22}{28\!\cdots\!91}a^{20}+\frac{21\!\cdots\!14}{28\!\cdots\!91}a^{19}+\frac{41\!\cdots\!63}{28\!\cdots\!91}a^{18}+\frac{53\!\cdots\!30}{28\!\cdots\!91}a^{17}+\frac{63\!\cdots\!47}{28\!\cdots\!91}a^{16}+\frac{87\!\cdots\!98}{28\!\cdots\!91}a^{15}+\frac{11\!\cdots\!44}{28\!\cdots\!91}a^{14}+\frac{94\!\cdots\!74}{28\!\cdots\!91}a^{13}+\frac{13\!\cdots\!02}{28\!\cdots\!91}a^{12}+\frac{70\!\cdots\!58}{28\!\cdots\!91}a^{11}+\frac{80\!\cdots\!98}{28\!\cdots\!91}a^{10}+\frac{31\!\cdots\!38}{28\!\cdots\!91}a^{9}+\frac{33\!\cdots\!34}{28\!\cdots\!91}a^{8}+\frac{92\!\cdots\!26}{28\!\cdots\!91}a^{7}+\frac{56\!\cdots\!60}{28\!\cdots\!91}a^{6}+\frac{72\!\cdots\!88}{28\!\cdots\!91}a^{5}+\frac{19\!\cdots\!63}{28\!\cdots\!91}a^{4}+\frac{34\!\cdots\!86}{28\!\cdots\!91}a^{3}+\frac{12\!\cdots\!42}{28\!\cdots\!91}a^{2}+\frac{22\!\cdots\!88}{28\!\cdots\!91}a-\frac{40\!\cdots\!99}{28\!\cdots\!91}$, $\frac{79\!\cdots\!48}{11\!\cdots\!69}a^{23}-\frac{34\!\cdots\!43}{11\!\cdots\!69}a^{22}+\frac{58\!\cdots\!56}{11\!\cdots\!69}a^{21}-\frac{68\!\cdots\!57}{11\!\cdots\!69}a^{20}+\frac{20\!\cdots\!66}{11\!\cdots\!69}a^{19}-\frac{46\!\cdots\!63}{11\!\cdots\!69}a^{18}+\frac{50\!\cdots\!50}{11\!\cdots\!69}a^{17}+\frac{39\!\cdots\!38}{11\!\cdots\!69}a^{16}+\frac{81\!\cdots\!90}{11\!\cdots\!69}a^{15}+\frac{72\!\cdots\!96}{11\!\cdots\!69}a^{14}+\frac{86\!\cdots\!76}{11\!\cdots\!69}a^{13}+\frac{88\!\cdots\!68}{11\!\cdots\!69}a^{12}+\frac{62\!\cdots\!42}{11\!\cdots\!69}a^{11}+\frac{49\!\cdots\!14}{11\!\cdots\!69}a^{10}+\frac{27\!\cdots\!72}{11\!\cdots\!69}a^{9}+\frac{19\!\cdots\!91}{11\!\cdots\!69}a^{8}+\frac{77\!\cdots\!34}{11\!\cdots\!69}a^{7}+\frac{19\!\cdots\!65}{11\!\cdots\!69}a^{6}+\frac{53\!\cdots\!02}{11\!\cdots\!69}a^{5}-\frac{58\!\cdots\!53}{10\!\cdots\!79}a^{4}+\frac{31\!\cdots\!94}{11\!\cdots\!69}a^{3}-\frac{15\!\cdots\!02}{11\!\cdots\!69}a^{2}+\frac{27\!\cdots\!82}{11\!\cdots\!69}a-\frac{13\!\cdots\!14}{11\!\cdots\!69}$, $\frac{83\!\cdots\!58}{28\!\cdots\!91}a^{23}-\frac{43\!\cdots\!00}{28\!\cdots\!91}a^{22}+\frac{65\!\cdots\!30}{28\!\cdots\!91}a^{21}-\frac{13\!\cdots\!61}{28\!\cdots\!91}a^{20}+\frac{22\!\cdots\!66}{28\!\cdots\!91}a^{19}-\frac{23\!\cdots\!46}{26\!\cdots\!81}a^{18}+\frac{53\!\cdots\!72}{28\!\cdots\!91}a^{17}-\frac{10\!\cdots\!54}{28\!\cdots\!91}a^{16}+\frac{81\!\cdots\!20}{28\!\cdots\!91}a^{15}-\frac{66\!\cdots\!25}{28\!\cdots\!91}a^{14}+\frac{83\!\cdots\!52}{28\!\cdots\!91}a^{13}+\frac{46\!\cdots\!86}{28\!\cdots\!91}a^{12}+\frac{57\!\cdots\!58}{28\!\cdots\!91}a^{11}-\frac{11\!\cdots\!22}{28\!\cdots\!91}a^{10}+\frac{24\!\cdots\!52}{28\!\cdots\!91}a^{9}-\frac{75\!\cdots\!71}{28\!\cdots\!91}a^{8}+\frac{63\!\cdots\!42}{28\!\cdots\!91}a^{7}-\frac{57\!\cdots\!10}{28\!\cdots\!91}a^{6}+\frac{42\!\cdots\!78}{28\!\cdots\!91}a^{5}-\frac{59\!\cdots\!40}{28\!\cdots\!91}a^{4}+\frac{44\!\cdots\!70}{28\!\cdots\!91}a^{3}-\frac{31\!\cdots\!15}{28\!\cdots\!91}a^{2}+\frac{45\!\cdots\!40}{28\!\cdots\!91}a-\frac{80\!\cdots\!72}{28\!\cdots\!91}$, $\frac{60\!\cdots\!42}{28\!\cdots\!91}a^{23}-\frac{24\!\cdots\!68}{28\!\cdots\!91}a^{22}+\frac{40\!\cdots\!50}{26\!\cdots\!81}a^{21}-\frac{37\!\cdots\!41}{28\!\cdots\!91}a^{20}+\frac{15\!\cdots\!00}{28\!\cdots\!91}a^{19}+\frac{15\!\cdots\!17}{28\!\cdots\!91}a^{18}+\frac{38\!\cdots\!58}{28\!\cdots\!91}a^{17}+\frac{42\!\cdots\!31}{28\!\cdots\!91}a^{16}+\frac{63\!\cdots\!02}{28\!\cdots\!91}a^{15}+\frac{76\!\cdots\!93}{28\!\cdots\!91}a^{14}+\frac{68\!\cdots\!22}{28\!\cdots\!91}a^{13}+\frac{89\!\cdots\!67}{28\!\cdots\!91}a^{12}+\frac{50\!\cdots\!60}{28\!\cdots\!91}a^{11}+\frac{54\!\cdots\!63}{28\!\cdots\!91}a^{10}+\frac{22\!\cdots\!16}{28\!\cdots\!91}a^{9}+\frac{22\!\cdots\!09}{28\!\cdots\!91}a^{8}+\frac{66\!\cdots\!46}{28\!\cdots\!91}a^{7}+\frac{35\!\cdots\!19}{28\!\cdots\!91}a^{6}+\frac{51\!\cdots\!00}{28\!\cdots\!91}a^{5}+\frac{10\!\cdots\!40}{28\!\cdots\!91}a^{4}+\frac{25\!\cdots\!36}{28\!\cdots\!91}a^{3}+\frac{65\!\cdots\!45}{28\!\cdots\!91}a^{2}+\frac{17\!\cdots\!46}{28\!\cdots\!91}a-\frac{28\!\cdots\!66}{25\!\cdots\!81}$, $\frac{21\!\cdots\!00}{28\!\cdots\!91}a^{23}-\frac{87\!\cdots\!52}{28\!\cdots\!91}a^{22}+\frac{15\!\cdots\!05}{28\!\cdots\!91}a^{21}-\frac{14\!\cdots\!23}{28\!\cdots\!91}a^{20}+\frac{56\!\cdots\!73}{28\!\cdots\!91}a^{19}+\frac{33\!\cdots\!99}{28\!\cdots\!91}a^{18}+\frac{13\!\cdots\!65}{28\!\cdots\!91}a^{17}+\frac{14\!\cdots\!73}{28\!\cdots\!91}a^{16}+\frac{22\!\cdots\!58}{28\!\cdots\!91}a^{15}+\frac{26\!\cdots\!08}{28\!\cdots\!91}a^{14}+\frac{24\!\cdots\!12}{28\!\cdots\!91}a^{13}+\frac{31\!\cdots\!11}{28\!\cdots\!91}a^{12}+\frac{18\!\cdots\!39}{28\!\cdots\!91}a^{11}+\frac{18\!\cdots\!25}{28\!\cdots\!91}a^{10}+\frac{81\!\cdots\!56}{28\!\cdots\!91}a^{9}+\frac{77\!\cdots\!10}{28\!\cdots\!91}a^{8}+\frac{23\!\cdots\!49}{28\!\cdots\!91}a^{7}+\frac{12\!\cdots\!97}{28\!\cdots\!91}a^{6}+\frac{18\!\cdots\!70}{28\!\cdots\!91}a^{5}+\frac{32\!\cdots\!78}{28\!\cdots\!91}a^{4}+\frac{94\!\cdots\!41}{28\!\cdots\!91}a^{3}+\frac{20\!\cdots\!99}{28\!\cdots\!91}a^{2}+\frac{65\!\cdots\!96}{28\!\cdots\!91}a-\frac{11\!\cdots\!92}{28\!\cdots\!91}$, $\frac{85\!\cdots\!96}{28\!\cdots\!91}a^{23}-\frac{33\!\cdots\!34}{28\!\cdots\!91}a^{22}+\frac{62\!\cdots\!20}{28\!\cdots\!91}a^{21}-\frac{48\!\cdots\!83}{28\!\cdots\!91}a^{20}+\frac{22\!\cdots\!84}{28\!\cdots\!91}a^{19}+\frac{37\!\cdots\!56}{28\!\cdots\!91}a^{18}+\frac{54\!\cdots\!91}{28\!\cdots\!91}a^{17}+\frac{58\!\cdots\!48}{26\!\cdots\!81}a^{16}+\frac{90\!\cdots\!51}{28\!\cdots\!91}a^{15}+\frac{10\!\cdots\!13}{26\!\cdots\!81}a^{14}+\frac{97\!\cdots\!57}{28\!\cdots\!91}a^{13}+\frac{13\!\cdots\!50}{28\!\cdots\!91}a^{12}+\frac{72\!\cdots\!80}{28\!\cdots\!91}a^{11}+\frac{81\!\cdots\!00}{28\!\cdots\!91}a^{10}+\frac{29\!\cdots\!37}{26\!\cdots\!81}a^{9}+\frac{33\!\cdots\!80}{28\!\cdots\!91}a^{8}+\frac{95\!\cdots\!35}{28\!\cdots\!91}a^{7}+\frac{56\!\cdots\!38}{28\!\cdots\!91}a^{6}+\frac{75\!\cdots\!55}{28\!\cdots\!91}a^{5}+\frac{19\!\cdots\!98}{28\!\cdots\!91}a^{4}+\frac{36\!\cdots\!75}{28\!\cdots\!91}a^{3}+\frac{10\!\cdots\!67}{28\!\cdots\!91}a^{2}+\frac{24\!\cdots\!70}{28\!\cdots\!91}a-\frac{42\!\cdots\!28}{28\!\cdots\!91}$, $\frac{21\!\cdots\!04}{28\!\cdots\!91}a^{23}-\frac{85\!\cdots\!76}{28\!\cdots\!91}a^{22}+\frac{15\!\cdots\!05}{28\!\cdots\!91}a^{21}-\frac{13\!\cdots\!58}{28\!\cdots\!91}a^{20}+\frac{55\!\cdots\!35}{28\!\cdots\!91}a^{19}+\frac{42\!\cdots\!77}{28\!\cdots\!91}a^{18}+\frac{13\!\cdots\!02}{28\!\cdots\!91}a^{17}+\frac{14\!\cdots\!69}{28\!\cdots\!91}a^{16}+\frac{22\!\cdots\!29}{28\!\cdots\!91}a^{15}+\frac{26\!\cdots\!34}{28\!\cdots\!91}a^{14}+\frac{24\!\cdots\!65}{28\!\cdots\!91}a^{13}+\frac{31\!\cdots\!84}{28\!\cdots\!91}a^{12}+\frac{17\!\cdots\!37}{28\!\cdots\!91}a^{11}+\frac{18\!\cdots\!24}{28\!\cdots\!91}a^{10}+\frac{80\!\cdots\!49}{28\!\cdots\!91}a^{9}+\frac{76\!\cdots\!98}{28\!\cdots\!91}a^{8}+\frac{23\!\cdots\!60}{28\!\cdots\!91}a^{7}+\frac{12\!\cdots\!20}{28\!\cdots\!91}a^{6}+\frac{18\!\cdots\!73}{28\!\cdots\!91}a^{5}+\frac{30\!\cdots\!41}{26\!\cdots\!81}a^{4}+\frac{91\!\cdots\!86}{28\!\cdots\!91}a^{3}+\frac{21\!\cdots\!91}{28\!\cdots\!91}a^{2}+\frac{63\!\cdots\!16}{28\!\cdots\!91}a-\frac{11\!\cdots\!81}{28\!\cdots\!91}$, $\frac{15\!\cdots\!06}{28\!\cdots\!91}a^{23}-\frac{66\!\cdots\!29}{28\!\cdots\!91}a^{22}+\frac{10\!\cdots\!61}{25\!\cdots\!81}a^{21}-\frac{13\!\cdots\!63}{28\!\cdots\!91}a^{20}+\frac{36\!\cdots\!45}{25\!\cdots\!81}a^{19}-\frac{84\!\cdots\!39}{28\!\cdots\!91}a^{18}+\frac{99\!\cdots\!11}{28\!\cdots\!91}a^{17}+\frac{78\!\cdots\!96}{28\!\cdots\!91}a^{16}+\frac{14\!\cdots\!81}{25\!\cdots\!81}a^{15}+\frac{14\!\cdots\!02}{28\!\cdots\!91}a^{14}+\frac{16\!\cdots\!48}{28\!\cdots\!91}a^{13}+\frac{17\!\cdots\!16}{28\!\cdots\!91}a^{12}+\frac{12\!\cdots\!86}{28\!\cdots\!91}a^{11}+\frac{98\!\cdots\!56}{28\!\cdots\!91}a^{10}+\frac{54\!\cdots\!83}{28\!\cdots\!91}a^{9}+\frac{38\!\cdots\!33}{28\!\cdots\!91}a^{8}+\frac{15\!\cdots\!88}{28\!\cdots\!91}a^{7}+\frac{36\!\cdots\!34}{25\!\cdots\!81}a^{6}+\frac{10\!\cdots\!17}{28\!\cdots\!91}a^{5}-\frac{12\!\cdots\!49}{28\!\cdots\!91}a^{4}+\frac{59\!\cdots\!60}{28\!\cdots\!91}a^{3}-\frac{29\!\cdots\!86}{28\!\cdots\!91}a^{2}+\frac{53\!\cdots\!35}{28\!\cdots\!91}a-\frac{10\!\cdots\!19}{28\!\cdots\!91}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 22287293994.214638 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 22287293994.214638 \cdot 190554}{6\cdot\sqrt{419626218829023046958936634321984000000000000000000}}\cr\approx \mathstrut & 0.130813110843853 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times C_{12}$ (as 24T2):
An abelian group of order 24 |
The 24 conjugacy class representatives for $C_2\times C_{12}$ |
Character table for $C_2\times C_{12}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.12.0.1}{12} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{12}$ | ${\href{/padicField/13.12.0.1}{12} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{12}$ | ${\href{/padicField/31.2.0.1}{2} }^{12}$ | R | ${\href{/padicField/41.6.0.1}{6} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{6}$ | ${\href{/padicField/47.4.0.1}{4} }^{6}$ | ${\href{/padicField/53.12.0.1}{12} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
\(3\) | Deg $24$ | $2$ | $12$ | $12$ | |||
\(5\) | Deg $24$ | $4$ | $6$ | $18$ | |||
\(37\) | 37.12.8.1 | $x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
37.12.8.1 | $x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |