Properties

Label 24.0.419...000.3
Degree $24$
Signature $[0, 12]$
Discriminant $4.196\times 10^{50}$
Root discriminant \(128.61\)
Ramified primes $2,3,5,37$
Class number $190554$ (GRH)
Class group [190554] (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201)
 
gp: K = bnfinit(y^24 - 4*y^23 + 73*y^22 - 64*y^21 + 2595*y^20 + 194*y^19 + 64108*y^18 + 69106*y^17 + 1048576*y^16 + 1235438*y^15 + 11305562*y^14 + 14569876*y^13 + 83892415*y^12 + 87789942*y^11 + 376397320*y^10 + 358161378*y^9 + 1087344601*y^8 + 565440970*y^7 + 843950596*y^6 + 157258846*y^5 + 429229107*y^4 + 99376060*y^3 + 29844986*y^2 - 533482*y + 10201, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201)
 

\( x^{24} - 4 x^{23} + 73 x^{22} - 64 x^{21} + 2595 x^{20} + 194 x^{19} + 64108 x^{18} + 69106 x^{17} + \cdots + 10201 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(419626218829023046958936634321984000000000000000000\) \(\medspace = 2^{24}\cdot 3^{12}\cdot 5^{18}\cdot 37^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(128.61\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{3/4}37^{2/3}\approx 128.61331797130134$
Ramified primes:   \(2\), \(3\), \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $24$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2220=2^{2}\cdot 3\cdot 5\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{2220}(1,·)$, $\chi_{2220}(1987,·)$, $\chi_{2220}(581,·)$, $\chi_{2220}(1543,·)$, $\chi_{2220}(1481,·)$, $\chi_{2220}(269,·)$, $\chi_{2220}(1247,·)$, $\chi_{2220}(889,·)$, $\chi_{2220}(787,·)$, $\chi_{2220}(149,·)$, $\chi_{2220}(1601,·)$, $\chi_{2220}(343,·)$, $\chi_{2220}(667,·)$, $\chi_{2220}(1823,·)$, $\chi_{2220}(2209,·)$, $\chi_{2220}(803,·)$, $\chi_{2220}(1703,·)$, $\chi_{2220}(1321,·)$, $\chi_{2220}(47,·)$, $\chi_{2220}(1009,·)$, $\chi_{2220}(2147,·)$, $\chi_{2220}(121,·)$, $\chi_{2220}(223,·)$, $\chi_{2220}(1469,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3873479}a^{20}-\frac{426662}{3873479}a^{19}-\frac{171623}{3873479}a^{18}-\frac{815012}{3873479}a^{17}-\frac{274941}{3873479}a^{16}-\frac{1646692}{3873479}a^{15}+\frac{329458}{3873479}a^{14}-\frac{292666}{3873479}a^{13}-\frac{990504}{3873479}a^{12}-\frac{1721268}{3873479}a^{11}-\frac{1289875}{3873479}a^{10}-\frac{1196948}{3873479}a^{9}-\frac{1185441}{3873479}a^{8}+\frac{676018}{3873479}a^{7}+\frac{1745033}{3873479}a^{6}+\frac{484759}{3873479}a^{5}-\frac{1934343}{3873479}a^{4}-\frac{714317}{3873479}a^{3}-\frac{1734239}{3873479}a^{2}+\frac{952024}{3873479}a+\frac{954050}{3873479}$, $\frac{1}{42608269}a^{21}+\frac{3}{42608269}a^{20}-\frac{15515206}{42608269}a^{19}+\frac{9525146}{42608269}a^{18}+\frac{15827741}{42608269}a^{17}-\frac{1036942}{42608269}a^{16}+\frac{20969609}{42608269}a^{15}-\frac{648006}{42608269}a^{14}+\frac{21254003}{42608269}a^{13}-\frac{18551528}{42608269}a^{12}-\frac{13850090}{42608269}a^{11}-\frac{517362}{3873479}a^{10}-\frac{13659022}{42608269}a^{9}+\frac{9506094}{42608269}a^{8}-\frac{11395690}{42608269}a^{7}-\frac{11270197}{42608269}a^{6}+\frac{3353187}{42608269}a^{5}+\frac{5000118}{42608269}a^{4}+\frac{20518508}{42608269}a^{3}-\frac{14551894}{42608269}a^{2}-\frac{7721762}{42608269}a+\frac{3582098}{42608269}$, $\frac{1}{10\!\cdots\!09}a^{22}+\frac{483034}{10\!\cdots\!09}a^{21}-\frac{1932079}{10\!\cdots\!09}a^{20}+\frac{331980108675750}{10\!\cdots\!09}a^{19}-\frac{253122061130618}{10\!\cdots\!09}a^{18}+\frac{40962040199483}{95047663984219}a^{17}+\frac{157064864270727}{10\!\cdots\!09}a^{16}+\frac{510147534721531}{10\!\cdots\!09}a^{15}-\frac{208787344468233}{10\!\cdots\!09}a^{14}-\frac{412671397691846}{10\!\cdots\!09}a^{13}-\frac{492431761015794}{10\!\cdots\!09}a^{12}+\frac{104916675136604}{10\!\cdots\!09}a^{11}+\frac{86033227560090}{10\!\cdots\!09}a^{10}+\frac{398643121378322}{10\!\cdots\!09}a^{9}-\frac{387238828238726}{10\!\cdots\!09}a^{8}+\frac{434195094898779}{10\!\cdots\!09}a^{7}-\frac{387059375965223}{10\!\cdots\!09}a^{6}+\frac{13284394323338}{95047663984219}a^{5}-\frac{290858442627998}{10\!\cdots\!09}a^{4}+\frac{32807549363200}{10\!\cdots\!09}a^{3}+\frac{288468795213567}{10\!\cdots\!09}a^{2}+\frac{310437901499612}{10\!\cdots\!09}a-\frac{238476642762471}{10\!\cdots\!09}$, $\frac{1}{28\!\cdots\!91}a^{23}-\frac{10\!\cdots\!20}{28\!\cdots\!91}a^{22}-\frac{11\!\cdots\!22}{26\!\cdots\!81}a^{21}+\frac{91\!\cdots\!05}{26\!\cdots\!81}a^{20}+\frac{56\!\cdots\!63}{28\!\cdots\!91}a^{19}+\frac{12\!\cdots\!65}{28\!\cdots\!91}a^{18}+\frac{12\!\cdots\!33}{28\!\cdots\!91}a^{17}+\frac{48\!\cdots\!65}{28\!\cdots\!91}a^{16}+\frac{36\!\cdots\!53}{28\!\cdots\!91}a^{15}+\frac{90\!\cdots\!04}{28\!\cdots\!91}a^{14}+\frac{50\!\cdots\!42}{28\!\cdots\!91}a^{13}+\frac{12\!\cdots\!72}{28\!\cdots\!91}a^{12}-\frac{69\!\cdots\!17}{26\!\cdots\!81}a^{11}+\frac{46\!\cdots\!53}{28\!\cdots\!91}a^{10}-\frac{12\!\cdots\!86}{28\!\cdots\!91}a^{9}+\frac{19\!\cdots\!29}{28\!\cdots\!91}a^{8}+\frac{96\!\cdots\!13}{28\!\cdots\!91}a^{7}+\frac{35\!\cdots\!14}{28\!\cdots\!91}a^{6}+\frac{24\!\cdots\!17}{28\!\cdots\!91}a^{5}-\frac{84\!\cdots\!63}{28\!\cdots\!91}a^{4}+\frac{10\!\cdots\!31}{26\!\cdots\!81}a^{3}+\frac{44\!\cdots\!81}{28\!\cdots\!91}a^{2}+\frac{36\!\cdots\!50}{28\!\cdots\!91}a-\frac{10\!\cdots\!53}{28\!\cdots\!91}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{190554}$, which has order $190554$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $190554$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{5333711474796986527473876296936428226681363331703891345077052719802}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{23} - \frac{21249630331823656869535865652234681130204018129596252525354818571542}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{22} + \frac{388990503066773194557329682623015796703320867483885757845012402254124}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{21} - \frac{335018674142527050334797482982510437987243540301471651672409830055584}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{20} + \frac{13833372486585686700836838581706151800472084581505319586574482917573294}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{19} + \frac{114340696593885321411197182200277081662589504747749666466537216859228}{273787418211032701412144903335193072248204310819114201712280612690199699} a^{18} + \frac{341873583263865357020491128770380529465044245869151851232483126920315500}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{17} + \frac{374048477128069025523274212158608216568671089217862104687378309877446902}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{16} + \frac{5596802580811050070727804033717413430264038009577162307480598945495415928}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{15} + \frac{6676784378756137907854578769543779349820929119398800758115490488552442629}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{14} + \frac{60375061518650791123239933148883131754577844080134183203925752868458908704}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{13} + \frac{78638751216397208293750662189348665492313964289310756591664247103181969687}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{12} + \frac{448368509897513590688132492409556266051061116539336320603930986785852463178}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{11} + \frac{474971303115522137600351395631238765252511537595041742282083813341124580703}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{10} + \frac{2012632084770214137588535016325080832314870860985888742199218830951910712018}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{9} + \frac{1939891633502600968818101603495971065087492263053426789764590833204060762649}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{8} + \frac{5819270695414828138522659692503792835063437211040188166004020159494972146596}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{7} + \frac{3098543009122888404161888254023827793505376324621441856141813445787391198805}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{6} + \frac{4518781535084015025394447007431293845518925313427347209105054396236858488240}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{5} + \frac{896403247094331038765288227122512793117045903132851151750556998066954331553}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{4} + \frac{207457407809495231231177942817866494744001333530907847361973153846213438526}{273787418211032701412144903335193072248204310819114201712280612690199699} a^{3} + \frac{567878285154797037148074276763533098892716924221555954423286846049801651297}{3011661600321359715533593936687123794730247419010256218835086739592196689} a^{2} + \frac{157504172178439878738156693944165207099561400079997365342552054696503255058}{3011661600321359715533593936687123794730247419010256218835086739592196689} a + \frac{1944194576605187982023222186809405108697005668711257786399066037825230}{29818431686350096193401920165219047472576707118913427909258284550417789} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{68\!\cdots\!02}{27\!\cdots\!69}a^{23}-\frac{29\!\cdots\!75}{27\!\cdots\!69}a^{22}+\frac{50\!\cdots\!54}{27\!\cdots\!69}a^{21}-\frac{57\!\cdots\!81}{27\!\cdots\!69}a^{20}+\frac{17\!\cdots\!58}{27\!\cdots\!69}a^{19}-\frac{37\!\cdots\!86}{27\!\cdots\!69}a^{18}+\frac{43\!\cdots\!90}{27\!\cdots\!69}a^{17}+\frac{34\!\cdots\!27}{27\!\cdots\!69}a^{16}+\frac{70\!\cdots\!70}{27\!\cdots\!69}a^{15}+\frac{63\!\cdots\!35}{27\!\cdots\!69}a^{14}+\frac{74\!\cdots\!36}{27\!\cdots\!69}a^{13}+\frac{77\!\cdots\!35}{27\!\cdots\!69}a^{12}+\frac{54\!\cdots\!20}{27\!\cdots\!69}a^{11}+\frac{43\!\cdots\!19}{27\!\cdots\!69}a^{10}+\frac{23\!\cdots\!10}{27\!\cdots\!69}a^{9}+\frac{17\!\cdots\!84}{27\!\cdots\!69}a^{8}+\frac{67\!\cdots\!54}{27\!\cdots\!69}a^{7}+\frac{17\!\cdots\!26}{27\!\cdots\!69}a^{6}+\frac{46\!\cdots\!30}{27\!\cdots\!69}a^{5}-\frac{48\!\cdots\!34}{25\!\cdots\!79}a^{4}+\frac{25\!\cdots\!16}{27\!\cdots\!69}a^{3}-\frac{13\!\cdots\!44}{27\!\cdots\!69}a^{2}+\frac{23\!\cdots\!16}{27\!\cdots\!69}a-\frac{45\!\cdots\!79}{27\!\cdots\!69}$, $\frac{18\!\cdots\!36}{56\!\cdots\!21}a^{23}-\frac{78\!\cdots\!59}{56\!\cdots\!21}a^{22}+\frac{14\!\cdots\!44}{62\!\cdots\!31}a^{21}-\frac{17\!\cdots\!93}{62\!\cdots\!31}a^{20}+\frac{52\!\cdots\!56}{62\!\cdots\!31}a^{19}-\frac{11\!\cdots\!17}{62\!\cdots\!31}a^{18}+\frac{12\!\cdots\!70}{62\!\cdots\!31}a^{17}+\frac{10\!\cdots\!91}{62\!\cdots\!31}a^{16}+\frac{20\!\cdots\!37}{62\!\cdots\!31}a^{15}+\frac{18\!\cdots\!99}{62\!\cdots\!31}a^{14}+\frac{21\!\cdots\!93}{62\!\cdots\!31}a^{13}+\frac{22\!\cdots\!05}{62\!\cdots\!31}a^{12}+\frac{16\!\cdots\!17}{62\!\cdots\!31}a^{11}+\frac{11\!\cdots\!95}{56\!\cdots\!21}a^{10}+\frac{70\!\cdots\!61}{62\!\cdots\!31}a^{9}+\frac{50\!\cdots\!34}{62\!\cdots\!31}a^{8}+\frac{19\!\cdots\!77}{62\!\cdots\!31}a^{7}+\frac{51\!\cdots\!52}{62\!\cdots\!31}a^{6}+\frac{13\!\cdots\!19}{62\!\cdots\!31}a^{5}-\frac{15\!\cdots\!46}{62\!\cdots\!31}a^{4}+\frac{75\!\cdots\!67}{62\!\cdots\!31}a^{3}-\frac{38\!\cdots\!78}{62\!\cdots\!31}a^{2}+\frac{69\!\cdots\!77}{62\!\cdots\!31}a+\frac{34\!\cdots\!02}{62\!\cdots\!31}$, $\frac{14\!\cdots\!77}{26\!\cdots\!81}a^{23}-\frac{63\!\cdots\!14}{28\!\cdots\!91}a^{22}+\frac{11\!\cdots\!67}{28\!\cdots\!91}a^{21}-\frac{10\!\cdots\!39}{28\!\cdots\!91}a^{20}+\frac{41\!\cdots\!64}{28\!\cdots\!91}a^{19}+\frac{40\!\cdots\!81}{28\!\cdots\!91}a^{18}+\frac{10\!\cdots\!85}{28\!\cdots\!91}a^{17}+\frac{11\!\cdots\!77}{28\!\cdots\!91}a^{16}+\frac{15\!\cdots\!75}{26\!\cdots\!81}a^{15}+\frac{20\!\cdots\!37}{28\!\cdots\!91}a^{14}+\frac{18\!\cdots\!89}{28\!\cdots\!91}a^{13}+\frac{23\!\cdots\!51}{28\!\cdots\!91}a^{12}+\frac{13\!\cdots\!79}{28\!\cdots\!91}a^{11}+\frac{14\!\cdots\!07}{28\!\cdots\!91}a^{10}+\frac{60\!\cdots\!74}{28\!\cdots\!91}a^{9}+\frac{58\!\cdots\!69}{28\!\cdots\!91}a^{8}+\frac{17\!\cdots\!28}{28\!\cdots\!91}a^{7}+\frac{94\!\cdots\!60}{28\!\cdots\!91}a^{6}+\frac{13\!\cdots\!46}{28\!\cdots\!91}a^{5}+\frac{28\!\cdots\!12}{28\!\cdots\!91}a^{4}+\frac{69\!\cdots\!46}{28\!\cdots\!91}a^{3}+\frac{17\!\cdots\!36}{28\!\cdots\!91}a^{2}+\frac{52\!\cdots\!35}{28\!\cdots\!91}a+\frac{59\!\cdots\!34}{28\!\cdots\!91}$, $\frac{83\!\cdots\!92}{28\!\cdots\!91}a^{23}-\frac{32\!\cdots\!22}{28\!\cdots\!91}a^{22}+\frac{60\!\cdots\!34}{28\!\cdots\!91}a^{21}-\frac{45\!\cdots\!22}{28\!\cdots\!91}a^{20}+\frac{21\!\cdots\!14}{28\!\cdots\!91}a^{19}+\frac{41\!\cdots\!63}{28\!\cdots\!91}a^{18}+\frac{53\!\cdots\!30}{28\!\cdots\!91}a^{17}+\frac{63\!\cdots\!47}{28\!\cdots\!91}a^{16}+\frac{87\!\cdots\!98}{28\!\cdots\!91}a^{15}+\frac{11\!\cdots\!44}{28\!\cdots\!91}a^{14}+\frac{94\!\cdots\!74}{28\!\cdots\!91}a^{13}+\frac{13\!\cdots\!02}{28\!\cdots\!91}a^{12}+\frac{70\!\cdots\!58}{28\!\cdots\!91}a^{11}+\frac{80\!\cdots\!98}{28\!\cdots\!91}a^{10}+\frac{31\!\cdots\!38}{28\!\cdots\!91}a^{9}+\frac{33\!\cdots\!34}{28\!\cdots\!91}a^{8}+\frac{92\!\cdots\!26}{28\!\cdots\!91}a^{7}+\frac{56\!\cdots\!60}{28\!\cdots\!91}a^{6}+\frac{72\!\cdots\!88}{28\!\cdots\!91}a^{5}+\frac{19\!\cdots\!63}{28\!\cdots\!91}a^{4}+\frac{34\!\cdots\!86}{28\!\cdots\!91}a^{3}+\frac{12\!\cdots\!42}{28\!\cdots\!91}a^{2}+\frac{22\!\cdots\!88}{28\!\cdots\!91}a-\frac{40\!\cdots\!99}{28\!\cdots\!91}$, $\frac{79\!\cdots\!48}{11\!\cdots\!69}a^{23}-\frac{34\!\cdots\!43}{11\!\cdots\!69}a^{22}+\frac{58\!\cdots\!56}{11\!\cdots\!69}a^{21}-\frac{68\!\cdots\!57}{11\!\cdots\!69}a^{20}+\frac{20\!\cdots\!66}{11\!\cdots\!69}a^{19}-\frac{46\!\cdots\!63}{11\!\cdots\!69}a^{18}+\frac{50\!\cdots\!50}{11\!\cdots\!69}a^{17}+\frac{39\!\cdots\!38}{11\!\cdots\!69}a^{16}+\frac{81\!\cdots\!90}{11\!\cdots\!69}a^{15}+\frac{72\!\cdots\!96}{11\!\cdots\!69}a^{14}+\frac{86\!\cdots\!76}{11\!\cdots\!69}a^{13}+\frac{88\!\cdots\!68}{11\!\cdots\!69}a^{12}+\frac{62\!\cdots\!42}{11\!\cdots\!69}a^{11}+\frac{49\!\cdots\!14}{11\!\cdots\!69}a^{10}+\frac{27\!\cdots\!72}{11\!\cdots\!69}a^{9}+\frac{19\!\cdots\!91}{11\!\cdots\!69}a^{8}+\frac{77\!\cdots\!34}{11\!\cdots\!69}a^{7}+\frac{19\!\cdots\!65}{11\!\cdots\!69}a^{6}+\frac{53\!\cdots\!02}{11\!\cdots\!69}a^{5}-\frac{58\!\cdots\!53}{10\!\cdots\!79}a^{4}+\frac{31\!\cdots\!94}{11\!\cdots\!69}a^{3}-\frac{15\!\cdots\!02}{11\!\cdots\!69}a^{2}+\frac{27\!\cdots\!82}{11\!\cdots\!69}a-\frac{13\!\cdots\!14}{11\!\cdots\!69}$, $\frac{83\!\cdots\!58}{28\!\cdots\!91}a^{23}-\frac{43\!\cdots\!00}{28\!\cdots\!91}a^{22}+\frac{65\!\cdots\!30}{28\!\cdots\!91}a^{21}-\frac{13\!\cdots\!61}{28\!\cdots\!91}a^{20}+\frac{22\!\cdots\!66}{28\!\cdots\!91}a^{19}-\frac{23\!\cdots\!46}{26\!\cdots\!81}a^{18}+\frac{53\!\cdots\!72}{28\!\cdots\!91}a^{17}-\frac{10\!\cdots\!54}{28\!\cdots\!91}a^{16}+\frac{81\!\cdots\!20}{28\!\cdots\!91}a^{15}-\frac{66\!\cdots\!25}{28\!\cdots\!91}a^{14}+\frac{83\!\cdots\!52}{28\!\cdots\!91}a^{13}+\frac{46\!\cdots\!86}{28\!\cdots\!91}a^{12}+\frac{57\!\cdots\!58}{28\!\cdots\!91}a^{11}-\frac{11\!\cdots\!22}{28\!\cdots\!91}a^{10}+\frac{24\!\cdots\!52}{28\!\cdots\!91}a^{9}-\frac{75\!\cdots\!71}{28\!\cdots\!91}a^{8}+\frac{63\!\cdots\!42}{28\!\cdots\!91}a^{7}-\frac{57\!\cdots\!10}{28\!\cdots\!91}a^{6}+\frac{42\!\cdots\!78}{28\!\cdots\!91}a^{5}-\frac{59\!\cdots\!40}{28\!\cdots\!91}a^{4}+\frac{44\!\cdots\!70}{28\!\cdots\!91}a^{3}-\frac{31\!\cdots\!15}{28\!\cdots\!91}a^{2}+\frac{45\!\cdots\!40}{28\!\cdots\!91}a-\frac{80\!\cdots\!72}{28\!\cdots\!91}$, $\frac{60\!\cdots\!42}{28\!\cdots\!91}a^{23}-\frac{24\!\cdots\!68}{28\!\cdots\!91}a^{22}+\frac{40\!\cdots\!50}{26\!\cdots\!81}a^{21}-\frac{37\!\cdots\!41}{28\!\cdots\!91}a^{20}+\frac{15\!\cdots\!00}{28\!\cdots\!91}a^{19}+\frac{15\!\cdots\!17}{28\!\cdots\!91}a^{18}+\frac{38\!\cdots\!58}{28\!\cdots\!91}a^{17}+\frac{42\!\cdots\!31}{28\!\cdots\!91}a^{16}+\frac{63\!\cdots\!02}{28\!\cdots\!91}a^{15}+\frac{76\!\cdots\!93}{28\!\cdots\!91}a^{14}+\frac{68\!\cdots\!22}{28\!\cdots\!91}a^{13}+\frac{89\!\cdots\!67}{28\!\cdots\!91}a^{12}+\frac{50\!\cdots\!60}{28\!\cdots\!91}a^{11}+\frac{54\!\cdots\!63}{28\!\cdots\!91}a^{10}+\frac{22\!\cdots\!16}{28\!\cdots\!91}a^{9}+\frac{22\!\cdots\!09}{28\!\cdots\!91}a^{8}+\frac{66\!\cdots\!46}{28\!\cdots\!91}a^{7}+\frac{35\!\cdots\!19}{28\!\cdots\!91}a^{6}+\frac{51\!\cdots\!00}{28\!\cdots\!91}a^{5}+\frac{10\!\cdots\!40}{28\!\cdots\!91}a^{4}+\frac{25\!\cdots\!36}{28\!\cdots\!91}a^{3}+\frac{65\!\cdots\!45}{28\!\cdots\!91}a^{2}+\frac{17\!\cdots\!46}{28\!\cdots\!91}a-\frac{28\!\cdots\!66}{25\!\cdots\!81}$, $\frac{21\!\cdots\!00}{28\!\cdots\!91}a^{23}-\frac{87\!\cdots\!52}{28\!\cdots\!91}a^{22}+\frac{15\!\cdots\!05}{28\!\cdots\!91}a^{21}-\frac{14\!\cdots\!23}{28\!\cdots\!91}a^{20}+\frac{56\!\cdots\!73}{28\!\cdots\!91}a^{19}+\frac{33\!\cdots\!99}{28\!\cdots\!91}a^{18}+\frac{13\!\cdots\!65}{28\!\cdots\!91}a^{17}+\frac{14\!\cdots\!73}{28\!\cdots\!91}a^{16}+\frac{22\!\cdots\!58}{28\!\cdots\!91}a^{15}+\frac{26\!\cdots\!08}{28\!\cdots\!91}a^{14}+\frac{24\!\cdots\!12}{28\!\cdots\!91}a^{13}+\frac{31\!\cdots\!11}{28\!\cdots\!91}a^{12}+\frac{18\!\cdots\!39}{28\!\cdots\!91}a^{11}+\frac{18\!\cdots\!25}{28\!\cdots\!91}a^{10}+\frac{81\!\cdots\!56}{28\!\cdots\!91}a^{9}+\frac{77\!\cdots\!10}{28\!\cdots\!91}a^{8}+\frac{23\!\cdots\!49}{28\!\cdots\!91}a^{7}+\frac{12\!\cdots\!97}{28\!\cdots\!91}a^{6}+\frac{18\!\cdots\!70}{28\!\cdots\!91}a^{5}+\frac{32\!\cdots\!78}{28\!\cdots\!91}a^{4}+\frac{94\!\cdots\!41}{28\!\cdots\!91}a^{3}+\frac{20\!\cdots\!99}{28\!\cdots\!91}a^{2}+\frac{65\!\cdots\!96}{28\!\cdots\!91}a-\frac{11\!\cdots\!92}{28\!\cdots\!91}$, $\frac{85\!\cdots\!96}{28\!\cdots\!91}a^{23}-\frac{33\!\cdots\!34}{28\!\cdots\!91}a^{22}+\frac{62\!\cdots\!20}{28\!\cdots\!91}a^{21}-\frac{48\!\cdots\!83}{28\!\cdots\!91}a^{20}+\frac{22\!\cdots\!84}{28\!\cdots\!91}a^{19}+\frac{37\!\cdots\!56}{28\!\cdots\!91}a^{18}+\frac{54\!\cdots\!91}{28\!\cdots\!91}a^{17}+\frac{58\!\cdots\!48}{26\!\cdots\!81}a^{16}+\frac{90\!\cdots\!51}{28\!\cdots\!91}a^{15}+\frac{10\!\cdots\!13}{26\!\cdots\!81}a^{14}+\frac{97\!\cdots\!57}{28\!\cdots\!91}a^{13}+\frac{13\!\cdots\!50}{28\!\cdots\!91}a^{12}+\frac{72\!\cdots\!80}{28\!\cdots\!91}a^{11}+\frac{81\!\cdots\!00}{28\!\cdots\!91}a^{10}+\frac{29\!\cdots\!37}{26\!\cdots\!81}a^{9}+\frac{33\!\cdots\!80}{28\!\cdots\!91}a^{8}+\frac{95\!\cdots\!35}{28\!\cdots\!91}a^{7}+\frac{56\!\cdots\!38}{28\!\cdots\!91}a^{6}+\frac{75\!\cdots\!55}{28\!\cdots\!91}a^{5}+\frac{19\!\cdots\!98}{28\!\cdots\!91}a^{4}+\frac{36\!\cdots\!75}{28\!\cdots\!91}a^{3}+\frac{10\!\cdots\!67}{28\!\cdots\!91}a^{2}+\frac{24\!\cdots\!70}{28\!\cdots\!91}a-\frac{42\!\cdots\!28}{28\!\cdots\!91}$, $\frac{21\!\cdots\!04}{28\!\cdots\!91}a^{23}-\frac{85\!\cdots\!76}{28\!\cdots\!91}a^{22}+\frac{15\!\cdots\!05}{28\!\cdots\!91}a^{21}-\frac{13\!\cdots\!58}{28\!\cdots\!91}a^{20}+\frac{55\!\cdots\!35}{28\!\cdots\!91}a^{19}+\frac{42\!\cdots\!77}{28\!\cdots\!91}a^{18}+\frac{13\!\cdots\!02}{28\!\cdots\!91}a^{17}+\frac{14\!\cdots\!69}{28\!\cdots\!91}a^{16}+\frac{22\!\cdots\!29}{28\!\cdots\!91}a^{15}+\frac{26\!\cdots\!34}{28\!\cdots\!91}a^{14}+\frac{24\!\cdots\!65}{28\!\cdots\!91}a^{13}+\frac{31\!\cdots\!84}{28\!\cdots\!91}a^{12}+\frac{17\!\cdots\!37}{28\!\cdots\!91}a^{11}+\frac{18\!\cdots\!24}{28\!\cdots\!91}a^{10}+\frac{80\!\cdots\!49}{28\!\cdots\!91}a^{9}+\frac{76\!\cdots\!98}{28\!\cdots\!91}a^{8}+\frac{23\!\cdots\!60}{28\!\cdots\!91}a^{7}+\frac{12\!\cdots\!20}{28\!\cdots\!91}a^{6}+\frac{18\!\cdots\!73}{28\!\cdots\!91}a^{5}+\frac{30\!\cdots\!41}{26\!\cdots\!81}a^{4}+\frac{91\!\cdots\!86}{28\!\cdots\!91}a^{3}+\frac{21\!\cdots\!91}{28\!\cdots\!91}a^{2}+\frac{63\!\cdots\!16}{28\!\cdots\!91}a-\frac{11\!\cdots\!81}{28\!\cdots\!91}$, $\frac{15\!\cdots\!06}{28\!\cdots\!91}a^{23}-\frac{66\!\cdots\!29}{28\!\cdots\!91}a^{22}+\frac{10\!\cdots\!61}{25\!\cdots\!81}a^{21}-\frac{13\!\cdots\!63}{28\!\cdots\!91}a^{20}+\frac{36\!\cdots\!45}{25\!\cdots\!81}a^{19}-\frac{84\!\cdots\!39}{28\!\cdots\!91}a^{18}+\frac{99\!\cdots\!11}{28\!\cdots\!91}a^{17}+\frac{78\!\cdots\!96}{28\!\cdots\!91}a^{16}+\frac{14\!\cdots\!81}{25\!\cdots\!81}a^{15}+\frac{14\!\cdots\!02}{28\!\cdots\!91}a^{14}+\frac{16\!\cdots\!48}{28\!\cdots\!91}a^{13}+\frac{17\!\cdots\!16}{28\!\cdots\!91}a^{12}+\frac{12\!\cdots\!86}{28\!\cdots\!91}a^{11}+\frac{98\!\cdots\!56}{28\!\cdots\!91}a^{10}+\frac{54\!\cdots\!83}{28\!\cdots\!91}a^{9}+\frac{38\!\cdots\!33}{28\!\cdots\!91}a^{8}+\frac{15\!\cdots\!88}{28\!\cdots\!91}a^{7}+\frac{36\!\cdots\!34}{25\!\cdots\!81}a^{6}+\frac{10\!\cdots\!17}{28\!\cdots\!91}a^{5}-\frac{12\!\cdots\!49}{28\!\cdots\!91}a^{4}+\frac{59\!\cdots\!60}{28\!\cdots\!91}a^{3}-\frac{29\!\cdots\!86}{28\!\cdots\!91}a^{2}+\frac{53\!\cdots\!35}{28\!\cdots\!91}a-\frac{10\!\cdots\!19}{28\!\cdots\!91}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 22287293994.214638 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 22287293994.214638 \cdot 190554}{6\cdot\sqrt{419626218829023046958936634321984000000000000000000}}\cr\approx \mathstrut & 0.130813110843853 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 4*x^23 + 73*x^22 - 64*x^21 + 2595*x^20 + 194*x^19 + 64108*x^18 + 69106*x^17 + 1048576*x^16 + 1235438*x^15 + 11305562*x^14 + 14569876*x^13 + 83892415*x^12 + 87789942*x^11 + 376397320*x^10 + 358161378*x^9 + 1087344601*x^8 + 565440970*x^7 + 843950596*x^6 + 157258846*x^5 + 429229107*x^4 + 99376060*x^3 + 29844986*x^2 - 533482*x + 10201);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{12}$ (as 24T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), 3.3.1369.1, \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\zeta_{20})^+\), 4.0.18000.1, 6.0.50602347.1, 6.6.234270125.1, 6.0.6325293375.1, 8.0.324000000.2, 12.0.40009336279818890625.1, 12.12.28099835631368000000000.1, 12.0.20484780175267272000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.12.0.1}{12} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{12}$ ${\href{/padicField/13.12.0.1}{12} }^{2}$ ${\href{/padicField/17.12.0.1}{12} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{6}$ ${\href{/padicField/29.2.0.1}{2} }^{12}$ ${\href{/padicField/31.2.0.1}{2} }^{12}$ R ${\href{/padicField/41.6.0.1}{6} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{6}$ ${\href{/padicField/47.4.0.1}{4} }^{6}$ ${\href{/padicField/53.12.0.1}{12} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.12.25$x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$$2$$6$$12$$C_{12}$$[2]^{6}$
2.12.12.25$x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$$2$$6$$12$$C_{12}$$[2]^{6}$
\(3\) Copy content Toggle raw display Deg $24$$2$$12$$12$
\(5\) Copy content Toggle raw display Deg $24$$4$$6$$18$
\(37\) Copy content Toggle raw display 37.12.8.1$x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
37.12.8.1$x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$