Normalized defining polynomial
\( x^{27} - 11 x^{26} + 70 x^{25} - 273 x^{24} + 723 x^{23} - 1456 x^{22} + 2649 x^{21} - 4775 x^{20} + \cdots + 1 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-8138911451501750747538217172562287688025999\) \(\medspace = -\,1999^{13}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(38.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $1999^{1/2}\approx 44.710177812216315$ | ||
Ramified primes: | \(1999\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1999}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{7}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{8}-\frac{2}{9}$, $\frac{1}{9}a^{17}+\frac{1}{9}a^{9}-\frac{2}{9}a$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{10}-\frac{2}{9}a^{2}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{11}-\frac{2}{9}a^{3}$, $\frac{1}{27}a^{20}+\frac{1}{27}a^{19}+\frac{1}{27}a^{18}-\frac{1}{27}a^{17}+\frac{1}{27}a^{16}+\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{2}{27}a^{12}+\frac{4}{27}a^{11}-\frac{2}{27}a^{10}+\frac{2}{27}a^{9}+\frac{4}{27}a^{8}-\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{1}{27}a^{4}-\frac{5}{27}a^{3}+\frac{1}{27}a^{2}-\frac{1}{27}a-\frac{5}{27}$, $\frac{1}{27}a^{21}+\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{1}{27}a^{16}-\frac{1}{9}a^{14}-\frac{2}{27}a^{13}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{2}{27}a^{10}-\frac{1}{27}a^{9}-\frac{1}{27}a^{8}+\frac{1}{9}a^{6}+\frac{1}{27}a^{5}+\frac{1}{9}a^{4}-\frac{1}{9}a^{3}+\frac{1}{27}a^{2}+\frac{2}{27}a+\frac{2}{27}$, $\frac{1}{27}a^{22}+\frac{1}{27}a^{19}-\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{1}{9}a^{15}-\frac{2}{27}a^{14}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{2}{27}a^{11}-\frac{1}{27}a^{10}-\frac{1}{27}a^{9}+\frac{1}{9}a^{7}+\frac{1}{27}a^{6}+\frac{1}{9}a^{5}-\frac{1}{9}a^{4}+\frac{1}{27}a^{3}+\frac{2}{27}a^{2}+\frac{2}{27}a$, $\frac{1}{27}a^{23}+\frac{1}{27}a^{19}+\frac{1}{27}a^{18}+\frac{1}{27}a^{17}-\frac{1}{27}a^{16}+\frac{4}{27}a^{15}+\frac{1}{9}a^{14}+\frac{1}{9}a^{13}-\frac{2}{27}a^{11}+\frac{4}{27}a^{10}-\frac{2}{27}a^{9}+\frac{2}{27}a^{8}-\frac{5}{27}a^{7}-\frac{1}{9}a^{6}-\frac{1}{9}a^{5}+\frac{1}{27}a^{3}-\frac{5}{27}a^{2}+\frac{1}{27}a-\frac{1}{27}$, $\frac{1}{189}a^{24}-\frac{1}{63}a^{23}-\frac{2}{189}a^{22}+\frac{1}{63}a^{21}+\frac{1}{189}a^{19}-\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{2}{63}a^{16}+\frac{1}{9}a^{15}+\frac{13}{189}a^{14}-\frac{1}{21}a^{13}-\frac{5}{63}a^{12}-\frac{20}{189}a^{11}+\frac{29}{189}a^{10}+\frac{2}{189}a^{9}+\frac{2}{21}a^{8}-\frac{2}{21}a^{7}-\frac{92}{189}a^{6}-\frac{16}{63}a^{5}+\frac{2}{9}a^{4}+\frac{73}{189}a^{3}-\frac{7}{27}a^{2}-\frac{76}{189}a+\frac{41}{189}$, $\frac{1}{6968997}a^{25}+\frac{907}{409941}a^{24}-\frac{119131}{6968997}a^{23}-\frac{16438}{2322999}a^{22}+\frac{111016}{6968997}a^{21}+\frac{5534}{774333}a^{20}-\frac{117550}{6968997}a^{19}+\frac{5057}{110619}a^{18}+\frac{281212}{6968997}a^{17}+\frac{38770}{774333}a^{16}-\frac{89272}{6968997}a^{15}-\frac{34507}{258111}a^{14}+\frac{994459}{6968997}a^{13}-\frac{45130}{331857}a^{12}-\frac{64678}{6968997}a^{11}-\frac{113357}{2322999}a^{10}-\frac{1043939}{6968997}a^{9}-\frac{5744}{110619}a^{8}+\frac{1188476}{6968997}a^{7}-\frac{4358}{331857}a^{6}-\frac{2482178}{6968997}a^{5}+\frac{147064}{2322999}a^{4}-\frac{60232}{6968997}a^{3}-\frac{575689}{2322999}a^{2}+\frac{43906}{331857}a+\frac{63727}{6968997}$, $\frac{1}{79\!\cdots\!03}a^{26}+\frac{10\!\cdots\!46}{26\!\cdots\!01}a^{25}+\frac{12\!\cdots\!97}{79\!\cdots\!03}a^{24}-\frac{68\!\cdots\!04}{46\!\cdots\!59}a^{23}-\frac{39\!\cdots\!03}{79\!\cdots\!03}a^{22}-\frac{13\!\cdots\!39}{79\!\cdots\!03}a^{21}+\frac{50\!\cdots\!68}{79\!\cdots\!03}a^{20}+\frac{36\!\cdots\!43}{79\!\cdots\!03}a^{19}-\frac{28\!\cdots\!31}{79\!\cdots\!03}a^{18}+\frac{30\!\cdots\!54}{79\!\cdots\!03}a^{17}-\frac{22\!\cdots\!59}{79\!\cdots\!03}a^{16}-\frac{86\!\cdots\!95}{79\!\cdots\!03}a^{15}-\frac{26\!\cdots\!31}{79\!\cdots\!03}a^{14}-\frac{40\!\cdots\!81}{79\!\cdots\!03}a^{13}-\frac{78\!\cdots\!42}{79\!\cdots\!03}a^{12}+\frac{43\!\cdots\!51}{79\!\cdots\!03}a^{11}-\frac{28\!\cdots\!08}{79\!\cdots\!03}a^{10}+\frac{20\!\cdots\!53}{16\!\cdots\!47}a^{9}-\frac{99\!\cdots\!34}{79\!\cdots\!03}a^{8}-\frac{47\!\cdots\!42}{11\!\cdots\!29}a^{7}-\frac{30\!\cdots\!29}{42\!\cdots\!37}a^{6}+\frac{22\!\cdots\!85}{42\!\cdots\!37}a^{5}+\frac{10\!\cdots\!88}{79\!\cdots\!03}a^{4}+\frac{13\!\cdots\!33}{79\!\cdots\!03}a^{3}-\frac{19\!\cdots\!94}{88\!\cdots\!67}a^{2}-\frac{14\!\cdots\!44}{42\!\cdots\!37}a+\frac{64\!\cdots\!01}{79\!\cdots\!03}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{54\!\cdots\!17}{79\!\cdots\!03}a^{26}-\frac{22\!\cdots\!63}{29\!\cdots\!89}a^{25}+\frac{38\!\cdots\!46}{79\!\cdots\!03}a^{24}-\frac{15\!\cdots\!95}{79\!\cdots\!03}a^{23}+\frac{39\!\cdots\!99}{79\!\cdots\!03}a^{22}-\frac{44\!\cdots\!63}{46\!\cdots\!59}a^{21}+\frac{13\!\cdots\!73}{79\!\cdots\!03}a^{20}-\frac{24\!\cdots\!29}{79\!\cdots\!03}a^{19}+\frac{40\!\cdots\!10}{79\!\cdots\!03}a^{18}-\frac{58\!\cdots\!37}{79\!\cdots\!03}a^{17}+\frac{75\!\cdots\!65}{79\!\cdots\!03}a^{16}-\frac{10\!\cdots\!18}{79\!\cdots\!03}a^{15}+\frac{13\!\cdots\!85}{79\!\cdots\!03}a^{14}-\frac{14\!\cdots\!73}{79\!\cdots\!03}a^{13}+\frac{13\!\cdots\!53}{79\!\cdots\!03}a^{12}-\frac{13\!\cdots\!36}{79\!\cdots\!03}a^{11}+\frac{15\!\cdots\!28}{79\!\cdots\!03}a^{10}-\frac{20\!\cdots\!76}{11\!\cdots\!29}a^{9}+\frac{87\!\cdots\!41}{79\!\cdots\!03}a^{8}-\frac{62\!\cdots\!96}{11\!\cdots\!29}a^{7}+\frac{22\!\cdots\!55}{42\!\cdots\!37}a^{6}-\frac{21\!\cdots\!64}{42\!\cdots\!37}a^{5}+\frac{13\!\cdots\!08}{79\!\cdots\!03}a^{4}+\frac{49\!\cdots\!03}{79\!\cdots\!03}a^{3}-\frac{22\!\cdots\!34}{29\!\cdots\!89}a^{2}-\frac{15\!\cdots\!54}{42\!\cdots\!37}a+\frac{77\!\cdots\!56}{79\!\cdots\!03}$, $\frac{11\!\cdots\!20}{26\!\cdots\!01}a^{26}-\frac{13\!\cdots\!79}{26\!\cdots\!01}a^{25}+\frac{27\!\cdots\!83}{88\!\cdots\!67}a^{24}-\frac{32\!\cdots\!33}{26\!\cdots\!01}a^{23}+\frac{83\!\cdots\!45}{26\!\cdots\!01}a^{22}-\frac{16\!\cdots\!17}{26\!\cdots\!01}a^{21}+\frac{28\!\cdots\!48}{26\!\cdots\!01}a^{20}-\frac{52\!\cdots\!11}{26\!\cdots\!01}a^{19}+\frac{86\!\cdots\!94}{26\!\cdots\!01}a^{18}-\frac{12\!\cdots\!90}{26\!\cdots\!01}a^{17}+\frac{15\!\cdots\!41}{26\!\cdots\!01}a^{16}-\frac{21\!\cdots\!36}{26\!\cdots\!01}a^{15}+\frac{28\!\cdots\!79}{26\!\cdots\!01}a^{14}-\frac{30\!\cdots\!70}{26\!\cdots\!01}a^{13}+\frac{16\!\cdots\!09}{15\!\cdots\!53}a^{12}-\frac{29\!\cdots\!71}{26\!\cdots\!01}a^{11}+\frac{32\!\cdots\!53}{26\!\cdots\!01}a^{10}-\frac{42\!\cdots\!72}{38\!\cdots\!43}a^{9}+\frac{17\!\cdots\!43}{26\!\cdots\!01}a^{8}-\frac{12\!\cdots\!37}{38\!\cdots\!43}a^{7}+\frac{50\!\cdots\!65}{14\!\cdots\!79}a^{6}-\frac{44\!\cdots\!86}{14\!\cdots\!79}a^{5}+\frac{22\!\cdots\!43}{26\!\cdots\!01}a^{4}+\frac{10\!\cdots\!25}{26\!\cdots\!01}a^{3}+\frac{69\!\cdots\!09}{88\!\cdots\!67}a^{2}-\frac{25\!\cdots\!76}{14\!\cdots\!79}a+\frac{24\!\cdots\!09}{26\!\cdots\!01}$, $\frac{99\!\cdots\!76}{46\!\cdots\!59}a^{26}-\frac{10\!\cdots\!52}{52\!\cdots\!51}a^{25}+\frac{56\!\cdots\!33}{46\!\cdots\!59}a^{24}-\frac{19\!\cdots\!98}{46\!\cdots\!59}a^{23}+\frac{44\!\cdots\!75}{46\!\cdots\!59}a^{22}-\frac{81\!\cdots\!13}{46\!\cdots\!59}a^{21}+\frac{14\!\cdots\!24}{46\!\cdots\!59}a^{20}-\frac{27\!\cdots\!30}{46\!\cdots\!59}a^{19}+\frac{42\!\cdots\!61}{46\!\cdots\!59}a^{18}-\frac{57\!\cdots\!94}{46\!\cdots\!59}a^{17}+\frac{76\!\cdots\!81}{46\!\cdots\!59}a^{16}-\frac{10\!\cdots\!92}{46\!\cdots\!59}a^{15}+\frac{13\!\cdots\!67}{46\!\cdots\!59}a^{14}-\frac{13\!\cdots\!32}{46\!\cdots\!59}a^{13}+\frac{13\!\cdots\!73}{46\!\cdots\!59}a^{12}-\frac{14\!\cdots\!42}{46\!\cdots\!59}a^{11}+\frac{15\!\cdots\!48}{46\!\cdots\!59}a^{10}-\frac{17\!\cdots\!00}{67\!\cdots\!37}a^{9}+\frac{74\!\cdots\!40}{46\!\cdots\!59}a^{8}-\frac{76\!\cdots\!21}{67\!\cdots\!37}a^{7}+\frac{27\!\cdots\!67}{24\!\cdots\!61}a^{6}-\frac{17\!\cdots\!95}{24\!\cdots\!61}a^{5}+\frac{93\!\cdots\!32}{46\!\cdots\!59}a^{4}-\frac{12\!\cdots\!96}{46\!\cdots\!59}a^{3}+\frac{60\!\cdots\!52}{17\!\cdots\!17}a^{2}-\frac{64\!\cdots\!32}{24\!\cdots\!61}a+\frac{56\!\cdots\!44}{46\!\cdots\!59}$, $\frac{15\!\cdots\!71}{79\!\cdots\!03}a^{26}-\frac{52\!\cdots\!43}{26\!\cdots\!01}a^{25}+\frac{94\!\cdots\!72}{79\!\cdots\!03}a^{24}-\frac{33\!\cdots\!68}{79\!\cdots\!03}a^{23}+\frac{79\!\cdots\!14}{79\!\cdots\!03}a^{22}-\frac{14\!\cdots\!81}{79\!\cdots\!03}a^{21}+\frac{15\!\cdots\!13}{46\!\cdots\!59}a^{20}-\frac{48\!\cdots\!01}{79\!\cdots\!03}a^{19}+\frac{77\!\cdots\!31}{79\!\cdots\!03}a^{18}-\frac{10\!\cdots\!76}{79\!\cdots\!03}a^{17}+\frac{13\!\cdots\!86}{79\!\cdots\!03}a^{16}-\frac{18\!\cdots\!09}{79\!\cdots\!03}a^{15}+\frac{23\!\cdots\!92}{79\!\cdots\!03}a^{14}-\frac{24\!\cdots\!08}{79\!\cdots\!03}a^{13}+\frac{23\!\cdots\!83}{79\!\cdots\!03}a^{12}-\frac{24\!\cdots\!38}{79\!\cdots\!03}a^{11}+\frac{27\!\cdots\!94}{79\!\cdots\!03}a^{10}-\frac{31\!\cdots\!19}{11\!\cdots\!29}a^{9}+\frac{11\!\cdots\!17}{79\!\cdots\!03}a^{8}-\frac{10\!\cdots\!73}{11\!\cdots\!29}a^{7}+\frac{43\!\cdots\!54}{42\!\cdots\!37}a^{6}-\frac{30\!\cdots\!49}{42\!\cdots\!37}a^{5}+\frac{67\!\cdots\!98}{79\!\cdots\!03}a^{4}+\frac{41\!\cdots\!71}{46\!\cdots\!59}a^{3}+\frac{39\!\cdots\!17}{88\!\cdots\!67}a^{2}-\frac{15\!\cdots\!60}{42\!\cdots\!37}a-\frac{60\!\cdots\!01}{79\!\cdots\!03}$, $\frac{70\!\cdots\!46}{79\!\cdots\!03}a^{26}-\frac{23\!\cdots\!74}{26\!\cdots\!01}a^{25}+\frac{40\!\cdots\!39}{79\!\cdots\!03}a^{24}-\frac{13\!\cdots\!64}{79\!\cdots\!03}a^{23}+\frac{30\!\cdots\!28}{79\!\cdots\!03}a^{22}-\frac{51\!\cdots\!85}{79\!\cdots\!03}a^{21}+\frac{90\!\cdots\!47}{79\!\cdots\!03}a^{20}-\frac{16\!\cdots\!70}{79\!\cdots\!03}a^{19}+\frac{14\!\cdots\!53}{46\!\cdots\!59}a^{18}-\frac{18\!\cdots\!75}{46\!\cdots\!59}a^{17}+\frac{39\!\cdots\!13}{79\!\cdots\!03}a^{16}-\frac{56\!\cdots\!08}{79\!\cdots\!03}a^{15}+\frac{40\!\cdots\!52}{46\!\cdots\!59}a^{14}-\frac{60\!\cdots\!22}{79\!\cdots\!03}a^{13}+\frac{49\!\cdots\!95}{79\!\cdots\!03}a^{12}-\frac{62\!\cdots\!09}{79\!\cdots\!03}a^{11}+\frac{68\!\cdots\!29}{79\!\cdots\!03}a^{10}-\frac{79\!\cdots\!93}{16\!\cdots\!47}a^{9}+\frac{30\!\cdots\!50}{79\!\cdots\!03}a^{8}-\frac{10\!\cdots\!46}{11\!\cdots\!29}a^{7}+\frac{65\!\cdots\!82}{24\!\cdots\!61}a^{6}-\frac{32\!\cdots\!28}{42\!\cdots\!37}a^{5}-\frac{92\!\cdots\!58}{79\!\cdots\!03}a^{4}+\frac{28\!\cdots\!28}{79\!\cdots\!03}a^{3}+\frac{35\!\cdots\!12}{88\!\cdots\!67}a^{2}+\frac{89\!\cdots\!57}{42\!\cdots\!37}a-\frac{62\!\cdots\!87}{79\!\cdots\!03}$, $\frac{23\!\cdots\!89}{79\!\cdots\!03}a^{26}-\frac{26\!\cdots\!06}{88\!\cdots\!67}a^{25}+\frac{14\!\cdots\!27}{79\!\cdots\!03}a^{24}-\frac{53\!\cdots\!98}{79\!\cdots\!03}a^{23}+\frac{13\!\cdots\!04}{79\!\cdots\!03}a^{22}-\frac{25\!\cdots\!76}{79\!\cdots\!03}a^{21}+\frac{26\!\cdots\!90}{46\!\cdots\!59}a^{20}-\frac{82\!\cdots\!01}{79\!\cdots\!03}a^{19}+\frac{13\!\cdots\!50}{79\!\cdots\!03}a^{18}-\frac{18\!\cdots\!81}{79\!\cdots\!03}a^{17}+\frac{24\!\cdots\!59}{79\!\cdots\!03}a^{16}-\frac{33\!\cdots\!71}{79\!\cdots\!03}a^{15}+\frac{43\!\cdots\!21}{79\!\cdots\!03}a^{14}-\frac{46\!\cdots\!92}{79\!\cdots\!03}a^{13}+\frac{44\!\cdots\!98}{79\!\cdots\!03}a^{12}-\frac{46\!\cdots\!57}{79\!\cdots\!03}a^{11}+\frac{50\!\cdots\!49}{79\!\cdots\!03}a^{10}-\frac{63\!\cdots\!33}{11\!\cdots\!29}a^{9}+\frac{27\!\cdots\!30}{79\!\cdots\!03}a^{8}-\frac{32\!\cdots\!97}{16\!\cdots\!47}a^{7}+\frac{79\!\cdots\!12}{42\!\cdots\!37}a^{6}-\frac{65\!\cdots\!53}{42\!\cdots\!37}a^{5}+\frac{40\!\cdots\!11}{79\!\cdots\!03}a^{4}+\frac{36\!\cdots\!58}{46\!\cdots\!59}a^{3}+\frac{77\!\cdots\!76}{29\!\cdots\!89}a^{2}-\frac{31\!\cdots\!85}{42\!\cdots\!37}a+\frac{11\!\cdots\!46}{79\!\cdots\!03}$, $\frac{69\!\cdots\!37}{79\!\cdots\!03}a^{26}-\frac{46\!\cdots\!12}{52\!\cdots\!51}a^{25}+\frac{43\!\cdots\!64}{79\!\cdots\!03}a^{24}-\frac{15\!\cdots\!75}{79\!\cdots\!03}a^{23}+\frac{36\!\cdots\!26}{79\!\cdots\!03}a^{22}-\frac{64\!\cdots\!54}{79\!\cdots\!03}a^{21}+\frac{11\!\cdots\!85}{79\!\cdots\!03}a^{20}-\frac{19\!\cdots\!74}{79\!\cdots\!03}a^{19}+\frac{31\!\cdots\!23}{79\!\cdots\!03}a^{18}-\frac{40\!\cdots\!19}{79\!\cdots\!03}a^{17}+\frac{48\!\cdots\!89}{79\!\cdots\!03}a^{16}-\frac{64\!\cdots\!44}{79\!\cdots\!03}a^{15}+\frac{81\!\cdots\!18}{79\!\cdots\!03}a^{14}-\frac{75\!\cdots\!39}{79\!\cdots\!03}a^{13}+\frac{53\!\cdots\!31}{79\!\cdots\!03}a^{12}-\frac{52\!\cdots\!36}{79\!\cdots\!03}a^{11}+\frac{65\!\cdots\!36}{79\!\cdots\!03}a^{10}-\frac{62\!\cdots\!45}{11\!\cdots\!29}a^{9}-\frac{77\!\cdots\!49}{79\!\cdots\!03}a^{8}+\frac{35\!\cdots\!44}{11\!\cdots\!29}a^{7}-\frac{41\!\cdots\!34}{42\!\cdots\!37}a^{6}-\frac{28\!\cdots\!70}{42\!\cdots\!37}a^{5}-\frac{11\!\cdots\!26}{79\!\cdots\!03}a^{4}+\frac{10\!\cdots\!96}{79\!\cdots\!03}a^{3}+\frac{21\!\cdots\!56}{29\!\cdots\!89}a^{2}-\frac{64\!\cdots\!65}{42\!\cdots\!37}a-\frac{62\!\cdots\!11}{46\!\cdots\!59}$, $\frac{46\!\cdots\!66}{21\!\cdots\!23}a^{26}-\frac{20\!\cdots\!69}{72\!\cdots\!41}a^{25}+\frac{41\!\cdots\!79}{21\!\cdots\!23}a^{24}-\frac{25\!\cdots\!69}{31\!\cdots\!89}a^{23}+\frac{29\!\cdots\!34}{12\!\cdots\!19}a^{22}-\frac{10\!\cdots\!02}{21\!\cdots\!23}a^{21}+\frac{27\!\cdots\!31}{31\!\cdots\!89}a^{20}-\frac{36\!\cdots\!88}{21\!\cdots\!23}a^{19}+\frac{62\!\cdots\!00}{21\!\cdots\!23}a^{18}-\frac{13\!\cdots\!16}{31\!\cdots\!89}a^{17}+\frac{18\!\cdots\!26}{31\!\cdots\!89}a^{16}-\frac{17\!\cdots\!44}{21\!\cdots\!23}a^{15}+\frac{23\!\cdots\!03}{21\!\cdots\!23}a^{14}-\frac{16\!\cdots\!50}{12\!\cdots\!19}a^{13}+\frac{40\!\cdots\!47}{31\!\cdots\!89}a^{12}-\frac{17\!\cdots\!90}{12\!\cdots\!19}a^{11}+\frac{31\!\cdots\!09}{21\!\cdots\!23}a^{10}-\frac{31\!\cdots\!71}{21\!\cdots\!23}a^{9}+\frac{24\!\cdots\!57}{21\!\cdots\!23}a^{8}-\frac{16\!\cdots\!74}{21\!\cdots\!23}a^{7}+\frac{72\!\cdots\!48}{11\!\cdots\!17}a^{6}-\frac{60\!\cdots\!55}{11\!\cdots\!17}a^{5}+\frac{53\!\cdots\!73}{18\!\cdots\!17}a^{4}-\frac{24\!\cdots\!46}{21\!\cdots\!23}a^{3}+\frac{16\!\cdots\!88}{24\!\cdots\!47}a^{2}-\frac{28\!\cdots\!97}{67\!\cdots\!01}a+\frac{27\!\cdots\!02}{21\!\cdots\!23}$, $\frac{25\!\cdots\!37}{88\!\cdots\!67}a^{26}-\frac{74\!\cdots\!71}{26\!\cdots\!01}a^{25}+\frac{44\!\cdots\!72}{26\!\cdots\!01}a^{24}-\frac{15\!\cdots\!76}{26\!\cdots\!01}a^{23}+\frac{40\!\cdots\!65}{29\!\cdots\!89}a^{22}-\frac{65\!\cdots\!31}{26\!\cdots\!01}a^{21}+\frac{39\!\cdots\!87}{88\!\cdots\!67}a^{20}-\frac{21\!\cdots\!22}{26\!\cdots\!01}a^{19}+\frac{11\!\cdots\!20}{88\!\cdots\!67}a^{18}-\frac{45\!\cdots\!96}{26\!\cdots\!01}a^{17}+\frac{19\!\cdots\!16}{88\!\cdots\!67}a^{16}-\frac{81\!\cdots\!35}{26\!\cdots\!01}a^{15}+\frac{34\!\cdots\!30}{88\!\cdots\!67}a^{14}-\frac{10\!\cdots\!57}{26\!\cdots\!01}a^{13}+\frac{32\!\cdots\!58}{88\!\cdots\!67}a^{12}-\frac{10\!\cdots\!12}{26\!\cdots\!01}a^{11}+\frac{22\!\cdots\!25}{52\!\cdots\!51}a^{10}-\frac{13\!\cdots\!24}{38\!\cdots\!43}a^{9}+\frac{16\!\cdots\!81}{88\!\cdots\!67}a^{8}-\frac{44\!\cdots\!39}{38\!\cdots\!43}a^{7}+\frac{59\!\cdots\!78}{46\!\cdots\!93}a^{6}-\frac{12\!\cdots\!86}{14\!\cdots\!79}a^{5}+\frac{32\!\cdots\!27}{32\!\cdots\!21}a^{4}+\frac{24\!\cdots\!20}{26\!\cdots\!01}a^{3}+\frac{25\!\cdots\!69}{52\!\cdots\!51}a^{2}-\frac{14\!\cdots\!64}{46\!\cdots\!93}a+\frac{47\!\cdots\!00}{11\!\cdots\!61}$, $\frac{23\!\cdots\!37}{11\!\cdots\!29}a^{26}-\frac{90\!\cdots\!88}{38\!\cdots\!43}a^{25}+\frac{17\!\cdots\!07}{11\!\cdots\!29}a^{24}-\frac{70\!\cdots\!78}{11\!\cdots\!29}a^{23}+\frac{19\!\cdots\!23}{11\!\cdots\!29}a^{22}-\frac{40\!\cdots\!58}{11\!\cdots\!29}a^{21}+\frac{74\!\cdots\!43}{11\!\cdots\!29}a^{20}-\frac{13\!\cdots\!63}{11\!\cdots\!29}a^{19}+\frac{22\!\cdots\!56}{11\!\cdots\!29}a^{18}-\frac{34\!\cdots\!04}{11\!\cdots\!29}a^{17}+\frac{46\!\cdots\!78}{11\!\cdots\!29}a^{16}-\frac{62\!\cdots\!09}{11\!\cdots\!29}a^{15}+\frac{81\!\cdots\!16}{11\!\cdots\!29}a^{14}-\frac{96\!\cdots\!10}{11\!\cdots\!29}a^{13}+\frac{99\!\cdots\!55}{11\!\cdots\!29}a^{12}-\frac{99\!\cdots\!38}{11\!\cdots\!29}a^{11}+\frac{14\!\cdots\!07}{16\!\cdots\!47}a^{10}-\frac{10\!\cdots\!88}{11\!\cdots\!29}a^{9}+\frac{78\!\cdots\!17}{11\!\cdots\!29}a^{8}-\frac{49\!\cdots\!66}{11\!\cdots\!29}a^{7}+\frac{18\!\cdots\!29}{60\!\cdots\!91}a^{6}-\frac{14\!\cdots\!61}{60\!\cdots\!91}a^{5}+\frac{15\!\cdots\!26}{11\!\cdots\!29}a^{4}-\frac{41\!\cdots\!46}{11\!\cdots\!29}a^{3}-\frac{27\!\cdots\!74}{12\!\cdots\!81}a^{2}+\frac{23\!\cdots\!07}{60\!\cdots\!91}a-\frac{25\!\cdots\!71}{11\!\cdots\!29}$, $\frac{11\!\cdots\!89}{26\!\cdots\!01}a^{26}-\frac{12\!\cdots\!40}{26\!\cdots\!01}a^{25}+\frac{25\!\cdots\!40}{88\!\cdots\!67}a^{24}-\frac{29\!\cdots\!91}{26\!\cdots\!01}a^{23}+\frac{45\!\cdots\!19}{15\!\cdots\!53}a^{22}-\frac{15\!\cdots\!91}{26\!\cdots\!01}a^{21}+\frac{27\!\cdots\!63}{26\!\cdots\!01}a^{20}-\frac{50\!\cdots\!18}{26\!\cdots\!01}a^{19}+\frac{84\!\cdots\!26}{26\!\cdots\!01}a^{18}-\frac{12\!\cdots\!02}{26\!\cdots\!01}a^{17}+\frac{16\!\cdots\!63}{26\!\cdots\!01}a^{16}-\frac{21\!\cdots\!15}{26\!\cdots\!01}a^{15}+\frac{28\!\cdots\!51}{26\!\cdots\!01}a^{14}-\frac{18\!\cdots\!36}{15\!\cdots\!53}a^{13}+\frac{32\!\cdots\!04}{26\!\cdots\!01}a^{12}-\frac{18\!\cdots\!10}{15\!\cdots\!53}a^{11}+\frac{34\!\cdots\!34}{26\!\cdots\!01}a^{10}-\frac{27\!\cdots\!02}{22\!\cdots\!89}a^{9}+\frac{22\!\cdots\!40}{26\!\cdots\!01}a^{8}-\frac{18\!\cdots\!14}{38\!\cdots\!43}a^{7}+\frac{51\!\cdots\!26}{14\!\cdots\!79}a^{6}-\frac{46\!\cdots\!18}{14\!\cdots\!79}a^{5}+\frac{27\!\cdots\!59}{15\!\cdots\!53}a^{4}-\frac{29\!\cdots\!71}{26\!\cdots\!01}a^{3}-\frac{15\!\cdots\!85}{88\!\cdots\!67}a^{2}-\frac{81\!\cdots\!62}{82\!\cdots\!87}a+\frac{25\!\cdots\!00}{26\!\cdots\!01}$, $\frac{27\!\cdots\!26}{46\!\cdots\!59}a^{26}+\frac{35\!\cdots\!48}{26\!\cdots\!01}a^{25}-\frac{60\!\cdots\!06}{46\!\cdots\!59}a^{24}+\frac{59\!\cdots\!03}{79\!\cdots\!03}a^{23}-\frac{20\!\cdots\!94}{79\!\cdots\!03}a^{22}+\frac{45\!\cdots\!65}{79\!\cdots\!03}a^{21}-\frac{79\!\cdots\!23}{79\!\cdots\!03}a^{20}+\frac{14\!\cdots\!98}{79\!\cdots\!03}a^{19}-\frac{26\!\cdots\!67}{79\!\cdots\!03}a^{18}+\frac{40\!\cdots\!41}{79\!\cdots\!03}a^{17}-\frac{53\!\cdots\!99}{79\!\cdots\!03}a^{16}+\frac{68\!\cdots\!79}{79\!\cdots\!03}a^{15}-\frac{95\!\cdots\!77}{79\!\cdots\!03}a^{14}+\frac{11\!\cdots\!55}{79\!\cdots\!03}a^{13}-\frac{11\!\cdots\!28}{79\!\cdots\!03}a^{12}+\frac{10\!\cdots\!49}{79\!\cdots\!03}a^{11}-\frac{11\!\cdots\!55}{79\!\cdots\!03}a^{10}+\frac{18\!\cdots\!45}{11\!\cdots\!29}a^{9}-\frac{92\!\cdots\!64}{79\!\cdots\!03}a^{8}+\frac{62\!\cdots\!94}{11\!\cdots\!29}a^{7}-\frac{17\!\cdots\!34}{42\!\cdots\!37}a^{6}+\frac{20\!\cdots\!21}{42\!\cdots\!37}a^{5}-\frac{21\!\cdots\!99}{79\!\cdots\!03}a^{4}-\frac{56\!\cdots\!26}{79\!\cdots\!03}a^{3}+\frac{15\!\cdots\!64}{88\!\cdots\!67}a^{2}+\frac{16\!\cdots\!03}{42\!\cdots\!37}a+\frac{11\!\cdots\!44}{79\!\cdots\!03}$, $\frac{30\!\cdots\!28}{79\!\cdots\!03}a^{26}-\frac{25\!\cdots\!31}{88\!\cdots\!67}a^{25}+\frac{10\!\cdots\!96}{79\!\cdots\!03}a^{24}-\frac{19\!\cdots\!55}{79\!\cdots\!03}a^{23}-\frac{84\!\cdots\!91}{79\!\cdots\!03}a^{22}+\frac{10\!\cdots\!73}{79\!\cdots\!03}a^{21}-\frac{22\!\cdots\!04}{79\!\cdots\!03}a^{20}+\frac{38\!\cdots\!86}{79\!\cdots\!03}a^{19}-\frac{89\!\cdots\!90}{79\!\cdots\!03}a^{18}+\frac{18\!\cdots\!67}{79\!\cdots\!03}a^{17}-\frac{26\!\cdots\!11}{79\!\cdots\!03}a^{16}+\frac{32\!\cdots\!52}{79\!\cdots\!03}a^{15}-\frac{47\!\cdots\!88}{79\!\cdots\!03}a^{14}+\frac{72\!\cdots\!76}{79\!\cdots\!03}a^{13}-\frac{83\!\cdots\!67}{79\!\cdots\!03}a^{12}+\frac{72\!\cdots\!12}{79\!\cdots\!03}a^{11}-\frac{72\!\cdots\!09}{79\!\cdots\!03}a^{10}+\frac{13\!\cdots\!60}{11\!\cdots\!29}a^{9}-\frac{95\!\cdots\!14}{79\!\cdots\!03}a^{8}+\frac{75\!\cdots\!86}{11\!\cdots\!29}a^{7}-\frac{11\!\cdots\!34}{42\!\cdots\!37}a^{6}+\frac{16\!\cdots\!02}{42\!\cdots\!37}a^{5}-\frac{33\!\cdots\!13}{79\!\cdots\!03}a^{4}+\frac{93\!\cdots\!52}{79\!\cdots\!03}a^{3}+\frac{16\!\cdots\!15}{29\!\cdots\!89}a^{2}+\frac{37\!\cdots\!03}{42\!\cdots\!37}a-\frac{24\!\cdots\!03}{79\!\cdots\!03}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 35248883953.15641 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 35248883953.15641 \cdot 5}{2\cdot\sqrt{8138911451501750747538217172562287688025999}}\cr\approx \mathstrut & 1.46950308511013 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 54 |
The 15 conjugacy class representatives for $D_{27}$ |
Character table for $D_{27}$ |
Intermediate fields
3.1.1999.1, 9.1.15968023992001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.9.0.1}{9} }^{3}$ | ${\href{/padicField/3.2.0.1}{2} }^{13}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $27$ | ${\href{/padicField/7.2.0.1}{2} }^{13}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/padicField/17.2.0.1}{2} }^{13}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.2.0.1}{2} }^{13}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $27$ | ${\href{/padicField/29.2.0.1}{2} }^{13}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $27$ | $27$ | ${\href{/padicField/41.9.0.1}{9} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{13}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.2.0.1}{2} }^{13}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $27$ | $27$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(1999\) | $\Q_{1999}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |