Properties

Label 27.1.813...999.1
Degree 2727
Signature [1,13][1, 13]
Discriminant 8.139×1042-8.139\times 10^{42}
Root discriminant 38.8438.84
Ramified prime 19991999
Class number 55 (GRH)
Class group [5] (GRH)
Galois group D27D_{27} (as 27T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1)
 
Copy content gp:K = bnfinit(y^27 - 11*y^26 + 70*y^25 - 273*y^24 + 723*y^23 - 1456*y^22 + 2649*y^21 - 4775*y^20 + 8022*y^19 - 11719*y^18 + 15552*y^17 - 20687*y^16 + 27099*y^15 - 31222*y^14 + 31020*y^13 - 30638*y^12 + 32802*y^11 - 31588*y^10 + 22446*y^9 - 12521*y^8 + 9384*y^7 - 8740*y^6 + 4644*y^5 - 254*y^4 - 460*y^3 - 287*y^2 + 245*y + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1)
 

x2711x26+70x25273x24+723x231456x22+2649x214775x20++1 x^{27} - 11 x^{26} + 70 x^{25} - 273 x^{24} + 723 x^{23} - 1456 x^{22} + 2649 x^{21} - 4775 x^{20} + \cdots + 1 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  2727
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [1,13][1, 13]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   8138911451501750747538217172562287688025999-8138911451501750747538217172562287688025999 =199913\medspace = -\,1999^{13} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  38.8438.84
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  19991/244.7101778122163151999^{1/2}\approx 44.710177812216315
Ramified primes:   19991999 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(1999)\Q(\sqrt{-1999})
Aut(K/Q)\Aut(K/\Q):   C1C_1
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, 13a813\frac{1}{3}a^{8}-\frac{1}{3}, 13a913a\frac{1}{3}a^{9}-\frac{1}{3}a, 13a1013a2\frac{1}{3}a^{10}-\frac{1}{3}a^{2}, 13a1113a3\frac{1}{3}a^{11}-\frac{1}{3}a^{3}, 13a1213a4\frac{1}{3}a^{12}-\frac{1}{3}a^{4}, 13a1313a5\frac{1}{3}a^{13}-\frac{1}{3}a^{5}, 13a1413a6\frac{1}{3}a^{14}-\frac{1}{3}a^{6}, 13a1513a7\frac{1}{3}a^{15}-\frac{1}{3}a^{7}, 19a16+19a829\frac{1}{9}a^{16}+\frac{1}{9}a^{8}-\frac{2}{9}, 19a17+19a929a\frac{1}{9}a^{17}+\frac{1}{9}a^{9}-\frac{2}{9}a, 19a18+19a1029a2\frac{1}{9}a^{18}+\frac{1}{9}a^{10}-\frac{2}{9}a^{2}, 19a19+19a1129a3\frac{1}{9}a^{19}+\frac{1}{9}a^{11}-\frac{2}{9}a^{3}, 127a20+127a19+127a18127a17+127a16+19a15+19a14227a12+427a11227a10+227a9+427a819a719a6+127a4527a3+127a2127a527\frac{1}{27}a^{20}+\frac{1}{27}a^{19}+\frac{1}{27}a^{18}-\frac{1}{27}a^{17}+\frac{1}{27}a^{16}+\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{2}{27}a^{12}+\frac{4}{27}a^{11}-\frac{2}{27}a^{10}+\frac{2}{27}a^{9}+\frac{4}{27}a^{8}-\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{1}{27}a^{4}-\frac{5}{27}a^{3}+\frac{1}{27}a^{2}-\frac{1}{27}a-\frac{5}{27}, 127a21+127a18127a17127a1619a14227a1319a12+19a11227a10127a9127a8+19a6+127a5+19a419a3+127a2+227a+227\frac{1}{27}a^{21}+\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{1}{27}a^{16}-\frac{1}{9}a^{14}-\frac{2}{27}a^{13}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{2}{27}a^{10}-\frac{1}{27}a^{9}-\frac{1}{27}a^{8}+\frac{1}{9}a^{6}+\frac{1}{27}a^{5}+\frac{1}{9}a^{4}-\frac{1}{9}a^{3}+\frac{1}{27}a^{2}+\frac{2}{27}a+\frac{2}{27}, 127a22+127a19127a18127a1719a15227a1419a13+19a12227a11127a10127a9+19a7+127a6+19a519a4+127a3+227a2+227a\frac{1}{27}a^{22}+\frac{1}{27}a^{19}-\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{1}{9}a^{15}-\frac{2}{27}a^{14}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{2}{27}a^{11}-\frac{1}{27}a^{10}-\frac{1}{27}a^{9}+\frac{1}{9}a^{7}+\frac{1}{27}a^{6}+\frac{1}{9}a^{5}-\frac{1}{9}a^{4}+\frac{1}{27}a^{3}+\frac{2}{27}a^{2}+\frac{2}{27}a, 127a23+127a19+127a18+127a17127a16+427a15+19a14+19a13227a11+427a10227a9+227a8527a719a619a5+127a3527a2+127a127\frac{1}{27}a^{23}+\frac{1}{27}a^{19}+\frac{1}{27}a^{18}+\frac{1}{27}a^{17}-\frac{1}{27}a^{16}+\frac{4}{27}a^{15}+\frac{1}{9}a^{14}+\frac{1}{9}a^{13}-\frac{2}{27}a^{11}+\frac{4}{27}a^{10}-\frac{2}{27}a^{9}+\frac{2}{27}a^{8}-\frac{5}{27}a^{7}-\frac{1}{9}a^{6}-\frac{1}{9}a^{5}+\frac{1}{27}a^{3}-\frac{5}{27}a^{2}+\frac{1}{27}a-\frac{1}{27}, 1189a24163a232189a22+163a21+1189a19127a18127a17263a16+19a15+13189a14121a13563a1220189a11+29189a10+2189a9+221a8221a792189a61663a5+29a4+73189a3727a276189a+41189\frac{1}{189}a^{24}-\frac{1}{63}a^{23}-\frac{2}{189}a^{22}+\frac{1}{63}a^{21}+\frac{1}{189}a^{19}-\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{2}{63}a^{16}+\frac{1}{9}a^{15}+\frac{13}{189}a^{14}-\frac{1}{21}a^{13}-\frac{5}{63}a^{12}-\frac{20}{189}a^{11}+\frac{29}{189}a^{10}+\frac{2}{189}a^{9}+\frac{2}{21}a^{8}-\frac{2}{21}a^{7}-\frac{92}{189}a^{6}-\frac{16}{63}a^{5}+\frac{2}{9}a^{4}+\frac{73}{189}a^{3}-\frac{7}{27}a^{2}-\frac{76}{189}a+\frac{41}{189}, 16968997a25+907409941a241191316968997a23164382322999a22+1110166968997a21+5534774333a201175506968997a19+5057110619a18+2812126968997a17+38770774333a16892726968997a1534507258111a14+9944596968997a1345130331857a12646786968997a111133572322999a1010439396968997a95744110619a8+11884766968997a74358331857a624821786968997a5+1470642322999a4602326968997a35756892322999a2+43906331857a+637276968997\frac{1}{6968997}a^{25}+\frac{907}{409941}a^{24}-\frac{119131}{6968997}a^{23}-\frac{16438}{2322999}a^{22}+\frac{111016}{6968997}a^{21}+\frac{5534}{774333}a^{20}-\frac{117550}{6968997}a^{19}+\frac{5057}{110619}a^{18}+\frac{281212}{6968997}a^{17}+\frac{38770}{774333}a^{16}-\frac{89272}{6968997}a^{15}-\frac{34507}{258111}a^{14}+\frac{994459}{6968997}a^{13}-\frac{45130}{331857}a^{12}-\frac{64678}{6968997}a^{11}-\frac{113357}{2322999}a^{10}-\frac{1043939}{6968997}a^{9}-\frac{5744}{110619}a^{8}+\frac{1188476}{6968997}a^{7}-\frac{4358}{331857}a^{6}-\frac{2482178}{6968997}a^{5}+\frac{147064}{2322999}a^{4}-\frac{60232}{6968997}a^{3}-\frac{575689}{2322999}a^{2}+\frac{43906}{331857}a+\frac{63727}{6968997}, 17903a26+10462601a25+12977903a2468044659a2339037903a2213397903a21+50687903a20+36437903a1928317903a18+30547903a1722597903a1686957903a1526317903a1440817903a1378427903a12+43517903a1128087903a10+20531647a999347903a847421129a730294237a6+22854237a5+10887903a4+13337903a319948867a214444237a+64017903\frac{1}{79\cdots 03}a^{26}+\frac{10\cdots 46}{26\cdots 01}a^{25}+\frac{12\cdots 97}{79\cdots 03}a^{24}-\frac{68\cdots 04}{46\cdots 59}a^{23}-\frac{39\cdots 03}{79\cdots 03}a^{22}-\frac{13\cdots 39}{79\cdots 03}a^{21}+\frac{50\cdots 68}{79\cdots 03}a^{20}+\frac{36\cdots 43}{79\cdots 03}a^{19}-\frac{28\cdots 31}{79\cdots 03}a^{18}+\frac{30\cdots 54}{79\cdots 03}a^{17}-\frac{22\cdots 59}{79\cdots 03}a^{16}-\frac{86\cdots 95}{79\cdots 03}a^{15}-\frac{26\cdots 31}{79\cdots 03}a^{14}-\frac{40\cdots 81}{79\cdots 03}a^{13}-\frac{78\cdots 42}{79\cdots 03}a^{12}+\frac{43\cdots 51}{79\cdots 03}a^{11}-\frac{28\cdots 08}{79\cdots 03}a^{10}+\frac{20\cdots 53}{16\cdots 47}a^{9}-\frac{99\cdots 34}{79\cdots 03}a^{8}-\frac{47\cdots 42}{11\cdots 29}a^{7}-\frac{30\cdots 29}{42\cdots 37}a^{6}+\frac{22\cdots 85}{42\cdots 37}a^{5}+\frac{10\cdots 88}{79\cdots 03}a^{4}+\frac{13\cdots 33}{79\cdots 03}a^{3}-\frac{19\cdots 94}{88\cdots 67}a^{2}-\frac{14\cdots 44}{42\cdots 37}a+\frac{64\cdots 01}{79\cdots 03} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  33

Class group and class number

Ideal class group:  C5C_{5}, which has order 55 (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  C5C_{5}, which has order 55 (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  1313
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   54177903a2622632989a25+38467903a2415957903a23+39997903a2244634659a21+13737903a2024297903a19+40107903a1858377903a17+75657903a1610187903a15+13857903a1414737903a13+13537903a1213367903a11+15287903a1020761129a9+87417903a862961129a7+22554237a621644237a5+13087903a4+49037903a322342989a215544237a+77567903\frac{54\cdots 17}{79\cdots 03}a^{26}-\frac{22\cdots 63}{29\cdots 89}a^{25}+\frac{38\cdots 46}{79\cdots 03}a^{24}-\frac{15\cdots 95}{79\cdots 03}a^{23}+\frac{39\cdots 99}{79\cdots 03}a^{22}-\frac{44\cdots 63}{46\cdots 59}a^{21}+\frac{13\cdots 73}{79\cdots 03}a^{20}-\frac{24\cdots 29}{79\cdots 03}a^{19}+\frac{40\cdots 10}{79\cdots 03}a^{18}-\frac{58\cdots 37}{79\cdots 03}a^{17}+\frac{75\cdots 65}{79\cdots 03}a^{16}-\frac{10\cdots 18}{79\cdots 03}a^{15}+\frac{13\cdots 85}{79\cdots 03}a^{14}-\frac{14\cdots 73}{79\cdots 03}a^{13}+\frac{13\cdots 53}{79\cdots 03}a^{12}-\frac{13\cdots 36}{79\cdots 03}a^{11}+\frac{15\cdots 28}{79\cdots 03}a^{10}-\frac{20\cdots 76}{11\cdots 29}a^{9}+\frac{87\cdots 41}{79\cdots 03}a^{8}-\frac{62\cdots 96}{11\cdots 29}a^{7}+\frac{22\cdots 55}{42\cdots 37}a^{6}-\frac{21\cdots 64}{42\cdots 37}a^{5}+\frac{13\cdots 08}{79\cdots 03}a^{4}+\frac{49\cdots 03}{79\cdots 03}a^{3}-\frac{22\cdots 34}{29\cdots 89}a^{2}-\frac{15\cdots 54}{42\cdots 37}a+\frac{77\cdots 56}{79\cdots 03}, 11202601a2613792601a25+27838867a2432332601a23+83452601a2216172601a21+28482601a2052112601a19+86942601a1812902601a17+15412601a1621362601a15+28792601a1430702601a13+16091553a1229712601a11+32532601a1042723843a9+17432601a812373843a7+50651479a644861479a5+22432601a4+10252601a3+69098867a225761479a+24092601\frac{11\cdots 20}{26\cdots 01}a^{26}-\frac{13\cdots 79}{26\cdots 01}a^{25}+\frac{27\cdots 83}{88\cdots 67}a^{24}-\frac{32\cdots 33}{26\cdots 01}a^{23}+\frac{83\cdots 45}{26\cdots 01}a^{22}-\frac{16\cdots 17}{26\cdots 01}a^{21}+\frac{28\cdots 48}{26\cdots 01}a^{20}-\frac{52\cdots 11}{26\cdots 01}a^{19}+\frac{86\cdots 94}{26\cdots 01}a^{18}-\frac{12\cdots 90}{26\cdots 01}a^{17}+\frac{15\cdots 41}{26\cdots 01}a^{16}-\frac{21\cdots 36}{26\cdots 01}a^{15}+\frac{28\cdots 79}{26\cdots 01}a^{14}-\frac{30\cdots 70}{26\cdots 01}a^{13}+\frac{16\cdots 09}{15\cdots 53}a^{12}-\frac{29\cdots 71}{26\cdots 01}a^{11}+\frac{32\cdots 53}{26\cdots 01}a^{10}-\frac{42\cdots 72}{38\cdots 43}a^{9}+\frac{17\cdots 43}{26\cdots 01}a^{8}-\frac{12\cdots 37}{38\cdots 43}a^{7}+\frac{50\cdots 65}{14\cdots 79}a^{6}-\frac{44\cdots 86}{14\cdots 79}a^{5}+\frac{22\cdots 43}{26\cdots 01}a^{4}+\frac{10\cdots 25}{26\cdots 01}a^{3}+\frac{69\cdots 09}{88\cdots 67}a^{2}-\frac{25\cdots 76}{14\cdots 79}a+\frac{24\cdots 09}{26\cdots 01}, 99764659a2610525251a25+56334659a2419984659a23+44754659a2281134659a21+14244659a2027304659a19+42614659a1857944659a17+76814659a1610924659a15+13674659a1413324659a13+13734659a1214424659a11+15484659a1017006737a9+74404659a876216737a7+27672461a617952461a5+93324659a412964659a3+60521717a264322461a+56444659\frac{99\cdots 76}{46\cdots 59}a^{26}-\frac{10\cdots 52}{52\cdots 51}a^{25}+\frac{56\cdots 33}{46\cdots 59}a^{24}-\frac{19\cdots 98}{46\cdots 59}a^{23}+\frac{44\cdots 75}{46\cdots 59}a^{22}-\frac{81\cdots 13}{46\cdots 59}a^{21}+\frac{14\cdots 24}{46\cdots 59}a^{20}-\frac{27\cdots 30}{46\cdots 59}a^{19}+\frac{42\cdots 61}{46\cdots 59}a^{18}-\frac{57\cdots 94}{46\cdots 59}a^{17}+\frac{76\cdots 81}{46\cdots 59}a^{16}-\frac{10\cdots 92}{46\cdots 59}a^{15}+\frac{13\cdots 67}{46\cdots 59}a^{14}-\frac{13\cdots 32}{46\cdots 59}a^{13}+\frac{13\cdots 73}{46\cdots 59}a^{12}-\frac{14\cdots 42}{46\cdots 59}a^{11}+\frac{15\cdots 48}{46\cdots 59}a^{10}-\frac{17\cdots 00}{67\cdots 37}a^{9}+\frac{74\cdots 40}{46\cdots 59}a^{8}-\frac{76\cdots 21}{67\cdots 37}a^{7}+\frac{27\cdots 67}{24\cdots 61}a^{6}-\frac{17\cdots 95}{24\cdots 61}a^{5}+\frac{93\cdots 32}{46\cdots 59}a^{4}-\frac{12\cdots 96}{46\cdots 59}a^{3}+\frac{60\cdots 52}{17\cdots 17}a^{2}-\frac{64\cdots 32}{24\cdots 61}a+\frac{56\cdots 44}{46\cdots 59}, 15717903a2652432601a25+94727903a2433687903a23+79147903a2214817903a21+15134659a2048017903a19+77317903a1810767903a17+13867903a1618097903a15+23927903a1424087903a13+23837903a1224387903a11+27947903a1031191129a9+11177903a810731129a7+43544237a630494237a5+67987903a4+41714659a3+39178867a215604237a60017903\frac{15\cdots 71}{79\cdots 03}a^{26}-\frac{52\cdots 43}{26\cdots 01}a^{25}+\frac{94\cdots 72}{79\cdots 03}a^{24}-\frac{33\cdots 68}{79\cdots 03}a^{23}+\frac{79\cdots 14}{79\cdots 03}a^{22}-\frac{14\cdots 81}{79\cdots 03}a^{21}+\frac{15\cdots 13}{46\cdots 59}a^{20}-\frac{48\cdots 01}{79\cdots 03}a^{19}+\frac{77\cdots 31}{79\cdots 03}a^{18}-\frac{10\cdots 76}{79\cdots 03}a^{17}+\frac{13\cdots 86}{79\cdots 03}a^{16}-\frac{18\cdots 09}{79\cdots 03}a^{15}+\frac{23\cdots 92}{79\cdots 03}a^{14}-\frac{24\cdots 08}{79\cdots 03}a^{13}+\frac{23\cdots 83}{79\cdots 03}a^{12}-\frac{24\cdots 38}{79\cdots 03}a^{11}+\frac{27\cdots 94}{79\cdots 03}a^{10}-\frac{31\cdots 19}{11\cdots 29}a^{9}+\frac{11\cdots 17}{79\cdots 03}a^{8}-\frac{10\cdots 73}{11\cdots 29}a^{7}+\frac{43\cdots 54}{42\cdots 37}a^{6}-\frac{30\cdots 49}{42\cdots 37}a^{5}+\frac{67\cdots 98}{79\cdots 03}a^{4}+\frac{41\cdots 71}{46\cdots 59}a^{3}+\frac{39\cdots 17}{88\cdots 67}a^{2}-\frac{15\cdots 60}{42\cdots 37}a-\frac{60\cdots 01}{79\cdots 03}, 70467903a2623742601a25+40397903a2413647903a23+30287903a2251857903a21+90477903a2016707903a19+14534659a1818754659a17+39137903a1656087903a15+40524659a1460227903a13+49957903a1262097903a11+68297903a1079931647a9+30507903a810461129a7+65822461a632284237a592587903a4+28287903a3+35128867a2+89574237a62877903\frac{70\cdots 46}{79\cdots 03}a^{26}-\frac{23\cdots 74}{26\cdots 01}a^{25}+\frac{40\cdots 39}{79\cdots 03}a^{24}-\frac{13\cdots 64}{79\cdots 03}a^{23}+\frac{30\cdots 28}{79\cdots 03}a^{22}-\frac{51\cdots 85}{79\cdots 03}a^{21}+\frac{90\cdots 47}{79\cdots 03}a^{20}-\frac{16\cdots 70}{79\cdots 03}a^{19}+\frac{14\cdots 53}{46\cdots 59}a^{18}-\frac{18\cdots 75}{46\cdots 59}a^{17}+\frac{39\cdots 13}{79\cdots 03}a^{16}-\frac{56\cdots 08}{79\cdots 03}a^{15}+\frac{40\cdots 52}{46\cdots 59}a^{14}-\frac{60\cdots 22}{79\cdots 03}a^{13}+\frac{49\cdots 95}{79\cdots 03}a^{12}-\frac{62\cdots 09}{79\cdots 03}a^{11}+\frac{68\cdots 29}{79\cdots 03}a^{10}-\frac{79\cdots 93}{16\cdots 47}a^{9}+\frac{30\cdots 50}{79\cdots 03}a^{8}-\frac{10\cdots 46}{11\cdots 29}a^{7}+\frac{65\cdots 82}{24\cdots 61}a^{6}-\frac{32\cdots 28}{42\cdots 37}a^{5}-\frac{92\cdots 58}{79\cdots 03}a^{4}+\frac{28\cdots 28}{79\cdots 03}a^{3}+\frac{35\cdots 12}{88\cdots 67}a^{2}+\frac{89\cdots 57}{42\cdots 37}a-\frac{62\cdots 87}{79\cdots 03}, 23897903a2626068867a25+14277903a2453987903a23+13047903a2225767903a21+26904659a2082017903a19+13507903a1818817903a17+24597903a1633717903a15+43217903a1446927903a13+44987903a1246577903a11+50497903a1063331129a9+27307903a832971647a7+79124237a665534237a5+40117903a4+36584659a3+77762989a231854237a+11467903\frac{23\cdots 89}{79\cdots 03}a^{26}-\frac{26\cdots 06}{88\cdots 67}a^{25}+\frac{14\cdots 27}{79\cdots 03}a^{24}-\frac{53\cdots 98}{79\cdots 03}a^{23}+\frac{13\cdots 04}{79\cdots 03}a^{22}-\frac{25\cdots 76}{79\cdots 03}a^{21}+\frac{26\cdots 90}{46\cdots 59}a^{20}-\frac{82\cdots 01}{79\cdots 03}a^{19}+\frac{13\cdots 50}{79\cdots 03}a^{18}-\frac{18\cdots 81}{79\cdots 03}a^{17}+\frac{24\cdots 59}{79\cdots 03}a^{16}-\frac{33\cdots 71}{79\cdots 03}a^{15}+\frac{43\cdots 21}{79\cdots 03}a^{14}-\frac{46\cdots 92}{79\cdots 03}a^{13}+\frac{44\cdots 98}{79\cdots 03}a^{12}-\frac{46\cdots 57}{79\cdots 03}a^{11}+\frac{50\cdots 49}{79\cdots 03}a^{10}-\frac{63\cdots 33}{11\cdots 29}a^{9}+\frac{27\cdots 30}{79\cdots 03}a^{8}-\frac{32\cdots 97}{16\cdots 47}a^{7}+\frac{79\cdots 12}{42\cdots 37}a^{6}-\frac{65\cdots 53}{42\cdots 37}a^{5}+\frac{40\cdots 11}{79\cdots 03}a^{4}+\frac{36\cdots 58}{46\cdots 59}a^{3}+\frac{77\cdots 76}{29\cdots 89}a^{2}-\frac{31\cdots 85}{42\cdots 37}a+\frac{11\cdots 46}{79\cdots 03}, 69377903a2646125251a25+43647903a2415757903a23+36267903a2264547903a21+11857903a2019747903a19+31237903a1840197903a17+48897903a1664447903a15+81187903a1475397903a13+53317903a1252367903a11+65367903a1062451129a977497903a8+35441129a741344237a628704237a511267903a4+10967903a3+21562989a264654237a62114659\frac{69\cdots 37}{79\cdots 03}a^{26}-\frac{46\cdots 12}{52\cdots 51}a^{25}+\frac{43\cdots 64}{79\cdots 03}a^{24}-\frac{15\cdots 75}{79\cdots 03}a^{23}+\frac{36\cdots 26}{79\cdots 03}a^{22}-\frac{64\cdots 54}{79\cdots 03}a^{21}+\frac{11\cdots 85}{79\cdots 03}a^{20}-\frac{19\cdots 74}{79\cdots 03}a^{19}+\frac{31\cdots 23}{79\cdots 03}a^{18}-\frac{40\cdots 19}{79\cdots 03}a^{17}+\frac{48\cdots 89}{79\cdots 03}a^{16}-\frac{64\cdots 44}{79\cdots 03}a^{15}+\frac{81\cdots 18}{79\cdots 03}a^{14}-\frac{75\cdots 39}{79\cdots 03}a^{13}+\frac{53\cdots 31}{79\cdots 03}a^{12}-\frac{52\cdots 36}{79\cdots 03}a^{11}+\frac{65\cdots 36}{79\cdots 03}a^{10}-\frac{62\cdots 45}{11\cdots 29}a^{9}-\frac{77\cdots 49}{79\cdots 03}a^{8}+\frac{35\cdots 44}{11\cdots 29}a^{7}-\frac{41\cdots 34}{42\cdots 37}a^{6}-\frac{28\cdots 70}{42\cdots 37}a^{5}-\frac{11\cdots 26}{79\cdots 03}a^{4}+\frac{10\cdots 96}{79\cdots 03}a^{3}+\frac{21\cdots 56}{29\cdots 89}a^{2}-\frac{64\cdots 65}{42\cdots 37}a-\frac{62\cdots 11}{46\cdots 59}, 46662123a2620697241a25+41792123a2425693189a23+29341219a2210022123a21+27313189a2036882123a19+62002123a1813163189a17+18263189a1617442123a15+23032123a1416501219a13+40473189a1217901219a11+31092123a1031712123a9+24572123a816742123a7+72481117a660551117a5+53731817a424462123a3+16882447a228976701a+27022123\frac{46\cdots 66}{21\cdots 23}a^{26}-\frac{20\cdots 69}{72\cdots 41}a^{25}+\frac{41\cdots 79}{21\cdots 23}a^{24}-\frac{25\cdots 69}{31\cdots 89}a^{23}+\frac{29\cdots 34}{12\cdots 19}a^{22}-\frac{10\cdots 02}{21\cdots 23}a^{21}+\frac{27\cdots 31}{31\cdots 89}a^{20}-\frac{36\cdots 88}{21\cdots 23}a^{19}+\frac{62\cdots 00}{21\cdots 23}a^{18}-\frac{13\cdots 16}{31\cdots 89}a^{17}+\frac{18\cdots 26}{31\cdots 89}a^{16}-\frac{17\cdots 44}{21\cdots 23}a^{15}+\frac{23\cdots 03}{21\cdots 23}a^{14}-\frac{16\cdots 50}{12\cdots 19}a^{13}+\frac{40\cdots 47}{31\cdots 89}a^{12}-\frac{17\cdots 90}{12\cdots 19}a^{11}+\frac{31\cdots 09}{21\cdots 23}a^{10}-\frac{31\cdots 71}{21\cdots 23}a^{9}+\frac{24\cdots 57}{21\cdots 23}a^{8}-\frac{16\cdots 74}{21\cdots 23}a^{7}+\frac{72\cdots 48}{11\cdots 17}a^{6}-\frac{60\cdots 55}{11\cdots 17}a^{5}+\frac{53\cdots 73}{18\cdots 17}a^{4}-\frac{24\cdots 46}{21\cdots 23}a^{3}+\frac{16\cdots 88}{24\cdots 47}a^{2}-\frac{28\cdots 97}{67\cdots 01}a+\frac{27\cdots 02}{21\cdots 23}, 25378867a2674712601a25+44722601a2415762601a23+40652989a2265312601a21+39878867a2021222601a19+11208867a1845962601a17+19168867a1681352601a15+34308867a1410572601a13+32588867a1210122601a11+22255251a1013243843a9+16818867a844393843a7+59784693a612861479a5+32273221a4+24202601a3+25695251a214644693a+47001161\frac{25\cdots 37}{88\cdots 67}a^{26}-\frac{74\cdots 71}{26\cdots 01}a^{25}+\frac{44\cdots 72}{26\cdots 01}a^{24}-\frac{15\cdots 76}{26\cdots 01}a^{23}+\frac{40\cdots 65}{29\cdots 89}a^{22}-\frac{65\cdots 31}{26\cdots 01}a^{21}+\frac{39\cdots 87}{88\cdots 67}a^{20}-\frac{21\cdots 22}{26\cdots 01}a^{19}+\frac{11\cdots 20}{88\cdots 67}a^{18}-\frac{45\cdots 96}{26\cdots 01}a^{17}+\frac{19\cdots 16}{88\cdots 67}a^{16}-\frac{81\cdots 35}{26\cdots 01}a^{15}+\frac{34\cdots 30}{88\cdots 67}a^{14}-\frac{10\cdots 57}{26\cdots 01}a^{13}+\frac{32\cdots 58}{88\cdots 67}a^{12}-\frac{10\cdots 12}{26\cdots 01}a^{11}+\frac{22\cdots 25}{52\cdots 51}a^{10}-\frac{13\cdots 24}{38\cdots 43}a^{9}+\frac{16\cdots 81}{88\cdots 67}a^{8}-\frac{44\cdots 39}{38\cdots 43}a^{7}+\frac{59\cdots 78}{46\cdots 93}a^{6}-\frac{12\cdots 86}{14\cdots 79}a^{5}+\frac{32\cdots 27}{32\cdots 21}a^{4}+\frac{24\cdots 20}{26\cdots 01}a^{3}+\frac{25\cdots 69}{52\cdots 51}a^{2}-\frac{14\cdots 64}{46\cdots 93}a+\frac{47\cdots 00}{11\cdots 61}, 23371129a2690883843a25+17071129a2470781129a23+19231129a2240581129a21+74431129a2013631129a19+22561129a1834041129a17+46781129a1662091129a15+81161129a1496101129a13+99551129a1299381129a11+14071647a1010881129a9+78171129a849661129a7+18296091a614616091a5+15261129a441461129a327741281a2+23076091a25711129\frac{23\cdots 37}{11\cdots 29}a^{26}-\frac{90\cdots 88}{38\cdots 43}a^{25}+\frac{17\cdots 07}{11\cdots 29}a^{24}-\frac{70\cdots 78}{11\cdots 29}a^{23}+\frac{19\cdots 23}{11\cdots 29}a^{22}-\frac{40\cdots 58}{11\cdots 29}a^{21}+\frac{74\cdots 43}{11\cdots 29}a^{20}-\frac{13\cdots 63}{11\cdots 29}a^{19}+\frac{22\cdots 56}{11\cdots 29}a^{18}-\frac{34\cdots 04}{11\cdots 29}a^{17}+\frac{46\cdots 78}{11\cdots 29}a^{16}-\frac{62\cdots 09}{11\cdots 29}a^{15}+\frac{81\cdots 16}{11\cdots 29}a^{14}-\frac{96\cdots 10}{11\cdots 29}a^{13}+\frac{99\cdots 55}{11\cdots 29}a^{12}-\frac{99\cdots 38}{11\cdots 29}a^{11}+\frac{14\cdots 07}{16\cdots 47}a^{10}-\frac{10\cdots 88}{11\cdots 29}a^{9}+\frac{78\cdots 17}{11\cdots 29}a^{8}-\frac{49\cdots 66}{11\cdots 29}a^{7}+\frac{18\cdots 29}{60\cdots 91}a^{6}-\frac{14\cdots 61}{60\cdots 91}a^{5}+\frac{15\cdots 26}{11\cdots 29}a^{4}-\frac{41\cdots 46}{11\cdots 29}a^{3}-\frac{27\cdots 74}{12\cdots 81}a^{2}+\frac{23\cdots 07}{60\cdots 91}a-\frac{25\cdots 71}{11\cdots 29}, 11892601a2612402601a25+25408867a2429912601a23+45191553a2215912601a21+27632601a2050182601a19+84262601a1812022601a17+16632601a1621152601a15+28512601a1418361553a13+32042601a1218101553a11+34342601a1027022289a9+22402601a818143843a7+51261479a646181479a5+27591553a429712601a315858867a281628287a+25002601\frac{11\cdots 89}{26\cdots 01}a^{26}-\frac{12\cdots 40}{26\cdots 01}a^{25}+\frac{25\cdots 40}{88\cdots 67}a^{24}-\frac{29\cdots 91}{26\cdots 01}a^{23}+\frac{45\cdots 19}{15\cdots 53}a^{22}-\frac{15\cdots 91}{26\cdots 01}a^{21}+\frac{27\cdots 63}{26\cdots 01}a^{20}-\frac{50\cdots 18}{26\cdots 01}a^{19}+\frac{84\cdots 26}{26\cdots 01}a^{18}-\frac{12\cdots 02}{26\cdots 01}a^{17}+\frac{16\cdots 63}{26\cdots 01}a^{16}-\frac{21\cdots 15}{26\cdots 01}a^{15}+\frac{28\cdots 51}{26\cdots 01}a^{14}-\frac{18\cdots 36}{15\cdots 53}a^{13}+\frac{32\cdots 04}{26\cdots 01}a^{12}-\frac{18\cdots 10}{15\cdots 53}a^{11}+\frac{34\cdots 34}{26\cdots 01}a^{10}-\frac{27\cdots 02}{22\cdots 89}a^{9}+\frac{22\cdots 40}{26\cdots 01}a^{8}-\frac{18\cdots 14}{38\cdots 43}a^{7}+\frac{51\cdots 26}{14\cdots 79}a^{6}-\frac{46\cdots 18}{14\cdots 79}a^{5}+\frac{27\cdots 59}{15\cdots 53}a^{4}-\frac{29\cdots 71}{26\cdots 01}a^{3}-\frac{15\cdots 85}{88\cdots 67}a^{2}-\frac{81\cdots 62}{82\cdots 87}a+\frac{25\cdots 00}{26\cdots 01}, 27264659a26+35482601a2560064659a24+59037903a2320947903a22+45657903a2179237903a20+14987903a1926677903a18+40417903a1753997903a16+68797903a1595777903a14+11557903a1311287903a12+10497903a1111557903a10+18451129a992647903a8+62941129a717344237a6+20214237a521997903a456267903a3+15648867a2+16034237a+11447903\frac{27\cdots 26}{46\cdots 59}a^{26}+\frac{35\cdots 48}{26\cdots 01}a^{25}-\frac{60\cdots 06}{46\cdots 59}a^{24}+\frac{59\cdots 03}{79\cdots 03}a^{23}-\frac{20\cdots 94}{79\cdots 03}a^{22}+\frac{45\cdots 65}{79\cdots 03}a^{21}-\frac{79\cdots 23}{79\cdots 03}a^{20}+\frac{14\cdots 98}{79\cdots 03}a^{19}-\frac{26\cdots 67}{79\cdots 03}a^{18}+\frac{40\cdots 41}{79\cdots 03}a^{17}-\frac{53\cdots 99}{79\cdots 03}a^{16}+\frac{68\cdots 79}{79\cdots 03}a^{15}-\frac{95\cdots 77}{79\cdots 03}a^{14}+\frac{11\cdots 55}{79\cdots 03}a^{13}-\frac{11\cdots 28}{79\cdots 03}a^{12}+\frac{10\cdots 49}{79\cdots 03}a^{11}-\frac{11\cdots 55}{79\cdots 03}a^{10}+\frac{18\cdots 45}{11\cdots 29}a^{9}-\frac{92\cdots 64}{79\cdots 03}a^{8}+\frac{62\cdots 94}{11\cdots 29}a^{7}-\frac{17\cdots 34}{42\cdots 37}a^{6}+\frac{20\cdots 21}{42\cdots 37}a^{5}-\frac{21\cdots 99}{79\cdots 03}a^{4}-\frac{56\cdots 26}{79\cdots 03}a^{3}+\frac{15\cdots 64}{88\cdots 67}a^{2}+\frac{16\cdots 03}{42\cdots 37}a+\frac{11\cdots 44}{79\cdots 03}, 30287903a2625318867a25+10967903a2419557903a2384917903a22+10737903a2122047903a20+38867903a1989907903a18+18677903a1726117903a16+32527903a1547887903a14+72767903a1383677903a12+72127903a1172097903a10+13601129a995147903a8+75861129a711344237a6+16024237a533137903a4+93527903a3+16152989a2+37034237a24037903\frac{30\cdots 28}{79\cdots 03}a^{26}-\frac{25\cdots 31}{88\cdots 67}a^{25}+\frac{10\cdots 96}{79\cdots 03}a^{24}-\frac{19\cdots 55}{79\cdots 03}a^{23}-\frac{84\cdots 91}{79\cdots 03}a^{22}+\frac{10\cdots 73}{79\cdots 03}a^{21}-\frac{22\cdots 04}{79\cdots 03}a^{20}+\frac{38\cdots 86}{79\cdots 03}a^{19}-\frac{89\cdots 90}{79\cdots 03}a^{18}+\frac{18\cdots 67}{79\cdots 03}a^{17}-\frac{26\cdots 11}{79\cdots 03}a^{16}+\frac{32\cdots 52}{79\cdots 03}a^{15}-\frac{47\cdots 88}{79\cdots 03}a^{14}+\frac{72\cdots 76}{79\cdots 03}a^{13}-\frac{83\cdots 67}{79\cdots 03}a^{12}+\frac{72\cdots 12}{79\cdots 03}a^{11}-\frac{72\cdots 09}{79\cdots 03}a^{10}+\frac{13\cdots 60}{11\cdots 29}a^{9}-\frac{95\cdots 14}{79\cdots 03}a^{8}+\frac{75\cdots 86}{11\cdots 29}a^{7}-\frac{11\cdots 34}{42\cdots 37}a^{6}+\frac{16\cdots 02}{42\cdots 37}a^{5}-\frac{33\cdots 13}{79\cdots 03}a^{4}+\frac{93\cdots 52}{79\cdots 03}a^{3}+\frac{16\cdots 15}{29\cdots 89}a^{2}+\frac{37\cdots 03}{42\cdots 37}a-\frac{24\cdots 03}{79\cdots 03} Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  35248883953.15641 35248883953.15641 (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(21(2π)1335248883953.15641528138911451501750747538217172562287688025999(1.46950308511013 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 35248883953.15641 \cdot 5}{2\cdot\sqrt{8138911451501750747538217172562287688025999}}\cr\approx \mathstrut & 1.46950308511013 \end{aligned} (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 11*x^26 + 70*x^25 - 273*x^24 + 723*x^23 - 1456*x^22 + 2649*x^21 - 4775*x^20 + 8022*x^19 - 11719*x^18 + 15552*x^17 - 20687*x^16 + 27099*x^15 - 31222*x^14 + 31020*x^13 - 30638*x^12 + 32802*x^11 - 31588*x^10 + 22446*x^9 - 12521*x^8 + 9384*x^7 - 8740*x^6 + 4644*x^5 - 254*x^4 - 460*x^3 - 287*x^2 + 245*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

D27D_{27} (as 27T8):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 54
The 15 conjugacy class representatives for D27D_{27}
Character table for D27D_{27}

Intermediate fields

3.1.1999.1, 9.1.15968023992001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type 93{\href{/padicField/2.9.0.1}{9} }^{3} 213,1{\href{/padicField/3.2.0.1}{2} }^{13}{,}\,{\href{/padicField/3.1.0.1}{1} } 2727 213,1{\href{/padicField/7.2.0.1}{2} }^{13}{,}\,{\href{/padicField/7.1.0.1}{1} } 2727 2727 213,1{\href{/padicField/17.2.0.1}{2} }^{13}{,}\,{\href{/padicField/17.1.0.1}{1} } 213,1{\href{/padicField/19.2.0.1}{2} }^{13}{,}\,{\href{/padicField/19.1.0.1}{1} } 2727 213,1{\href{/padicField/29.2.0.1}{2} }^{13}{,}\,{\href{/padicField/29.1.0.1}{1} } 2727 2727 93{\href{/padicField/41.9.0.1}{9} }^{3} 213,1{\href{/padicField/43.2.0.1}{2} }^{13}{,}\,{\href{/padicField/43.1.0.1}{1} } 213,1{\href{/padicField/47.2.0.1}{2} }^{13}{,}\,{\href{/padicField/47.1.0.1}{1} } 2727 2727

Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
19991999 Copy content Toggle raw display Q1999\Q_{1999}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}

Artin representations

Label Dimension Conductor Artin stem field GG Ind χ(c)\chi(c)
* 1.1.1t1.a.a11 11 Q\Q C1C_1 11 11
1.1999.2t1.a.a11 1999 1999 Q(1999)\Q(\sqrt{-1999}) C2C_2 (as 2T1) 11 1-1
* 2.1999.3t2.a.a22 1999 1999 3.1.1999.1 S3S_3 (as 3T2) 11 00
* 2.1999.9t3.a.c22 1999 1999 9.1.15968023992001.1 D9D_{9} (as 9T3) 11 00
* 2.1999.9t3.a.a22 1999 1999 9.1.15968023992001.1 D9D_{9} (as 9T3) 11 00
* 2.1999.9t3.a.b22 1999 1999 9.1.15968023992001.1 D9D_{9} (as 9T3) 11 00
* 2.1999.27t8.a.i22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.d22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.f22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.g22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.c22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.b22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.e22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.a22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00
* 2.1999.27t8.a.h22 1999 1999 27.1.8138911451501750747538217172562287688025999.1 D27D_{27} (as 27T8) 11 00

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)