Properties

Label 27.3.131...000.1
Degree $27$
Signature $[3, 12]$
Discriminant $1.318\times 10^{40}$
Root discriminant \(30.61\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^3:D_6$ (as 27T128)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4)
 
gp: K = bnfinit(y^27 - 9*y^26 + 33*y^25 - 41*y^24 - 111*y^23 + 597*y^22 - 1314*y^21 + 1746*y^20 - 1209*y^19 - 463*y^18 + 2265*y^17 - 3507*y^16 + 4726*y^15 - 6558*y^14 + 8271*y^13 - 2855*y^12 - 13755*y^11 + 25959*y^10 - 17496*y^9 - 1668*y^8 + 13713*y^7 - 14007*y^6 + 7287*y^5 - 1335*y^4 + 331*y^3 - 255*y^2 + 42*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4)
 

\( x^{27} - 9 x^{26} + 33 x^{25} - 41 x^{24} - 111 x^{23} + 597 x^{22} - 1314 x^{21} + 1746 x^{20} + \cdots - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(13177032454057536000000000000000000000000\) \(\medspace = 2^{30}\cdot 3^{30}\cdot 5^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.61\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}3^{7/6}5^{8/9}\approx 37.9595855361366$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{6}a^{18}+\frac{1}{6}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}+\frac{1}{6}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{3}a^{3}-\frac{1}{2}a+\frac{1}{3}$, $\frac{1}{12}a^{19}-\frac{1}{12}a^{18}-\frac{1}{4}a^{17}+\frac{1}{12}a^{16}-\frac{1}{12}a^{15}+\frac{1}{4}a^{14}-\frac{1}{2}a^{12}-\frac{1}{6}a^{10}-\frac{1}{3}a^{9}+\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{12}a^{4}-\frac{1}{12}a^{3}+\frac{1}{4}a^{2}+\frac{1}{6}a+\frac{1}{3}$, $\frac{1}{12}a^{20}-\frac{1}{6}a^{17}-\frac{1}{2}a^{15}+\frac{1}{4}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{6}a^{11}-\frac{1}{2}a^{10}+\frac{1}{4}a^{8}+\frac{1}{3}a^{5}-\frac{1}{2}a^{3}+\frac{5}{12}a^{2}-\frac{1}{2}a$, $\frac{1}{24}a^{21}-\frac{1}{24}a^{20}-\frac{1}{12}a^{18}+\frac{1}{12}a^{17}-\frac{1}{4}a^{16}-\frac{1}{8}a^{15}+\frac{1}{8}a^{14}-\frac{1}{2}a^{13}-\frac{1}{3}a^{12}-\frac{1}{6}a^{11}-\frac{1}{4}a^{10}-\frac{3}{8}a^{9}+\frac{3}{8}a^{8}-\frac{1}{3}a^{6}-\frac{1}{6}a^{5}-\frac{1}{4}a^{4}-\frac{1}{24}a^{3}-\frac{11}{24}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{24}a^{22}-\frac{1}{24}a^{20}-\frac{1}{12}a^{18}+\frac{1}{12}a^{17}+\frac{5}{24}a^{16}-\frac{1}{12}a^{15}-\frac{1}{8}a^{14}-\frac{1}{3}a^{13}-\frac{1}{2}a^{12}+\frac{1}{12}a^{11}-\frac{7}{24}a^{10}+\frac{1}{6}a^{9}-\frac{1}{8}a^{8}+\frac{5}{12}a^{7}-\frac{1}{4}a^{6}-\frac{1}{6}a^{5}-\frac{5}{24}a^{4}-\frac{1}{12}a^{3}-\frac{11}{24}a^{2}-\frac{1}{12}a-\frac{1}{6}$, $\frac{1}{24}a^{23}-\frac{1}{24}a^{20}-\frac{1}{12}a^{18}+\frac{1}{24}a^{17}-\frac{1}{4}a^{16}-\frac{1}{3}a^{15}+\frac{1}{24}a^{14}+\frac{1}{4}a^{12}-\frac{11}{24}a^{11}-\frac{1}{4}a^{10}+\frac{1}{6}a^{9}-\frac{5}{24}a^{8}+\frac{1}{4}a^{6}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}+\frac{5}{12}a^{3}-\frac{7}{24}a^{2}+\frac{1}{4}a-\frac{1}{6}$, $\frac{1}{144}a^{24}-\frac{1}{48}a^{20}-\frac{1}{24}a^{19}-\frac{1}{16}a^{18}+\frac{1}{12}a^{17}+\frac{5}{24}a^{16}+\frac{25}{72}a^{15}-\frac{17}{48}a^{14}-\frac{11}{24}a^{13}+\frac{53}{144}a^{12}-\frac{1}{8}a^{11}-\frac{1}{8}a^{10}-\frac{17}{72}a^{9}+\frac{5}{48}a^{8}-\frac{1}{8}a^{7}-\frac{71}{144}a^{6}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{9}a^{3}+\frac{23}{48}a^{2}+\frac{11}{24}a-\frac{7}{36}$, $\frac{1}{144}a^{25}-\frac{1}{48}a^{21}-\frac{1}{24}a^{20}+\frac{1}{48}a^{19}-\frac{1}{24}a^{17}-\frac{5}{72}a^{16}+\frac{1}{16}a^{15}-\frac{5}{24}a^{14}+\frac{53}{144}a^{13}-\frac{1}{8}a^{12}+\frac{3}{8}a^{11}+\frac{7}{72}a^{10}+\frac{13}{48}a^{9}+\frac{3}{8}a^{8}+\frac{37}{144}a^{7}+\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{36}a^{4}+\frac{19}{48}a^{3}+\frac{5}{24}a^{2}+\frac{17}{36}a+\frac{1}{3}$, $\frac{1}{11\!\cdots\!24}a^{26}-\frac{10\!\cdots\!67}{59\!\cdots\!12}a^{25}+\frac{32\!\cdots\!63}{11\!\cdots\!24}a^{24}-\frac{12\!\cdots\!31}{99\!\cdots\!52}a^{23}-\frac{16\!\cdots\!31}{13\!\cdots\!36}a^{22}-\frac{21\!\cdots\!15}{24\!\cdots\!38}a^{21}+\frac{38\!\cdots\!19}{19\!\cdots\!04}a^{20}+\frac{46\!\cdots\!61}{12\!\cdots\!69}a^{19}+\frac{30\!\cdots\!57}{39\!\cdots\!08}a^{18}+\frac{10\!\cdots\!63}{59\!\cdots\!12}a^{17}-\frac{78\!\cdots\!13}{11\!\cdots\!24}a^{16}-\frac{62\!\cdots\!03}{59\!\cdots\!12}a^{15}-\frac{38\!\cdots\!56}{37\!\cdots\!07}a^{14}+\frac{48\!\cdots\!05}{59\!\cdots\!12}a^{13}+\frac{18\!\cdots\!25}{11\!\cdots\!24}a^{12}-\frac{85\!\cdots\!77}{37\!\cdots\!07}a^{11}-\frac{24\!\cdots\!27}{11\!\cdots\!24}a^{10}+\frac{78\!\cdots\!85}{59\!\cdots\!12}a^{9}+\frac{92\!\cdots\!53}{59\!\cdots\!12}a^{8}-\frac{44\!\cdots\!63}{59\!\cdots\!12}a^{7}+\frac{38\!\cdots\!75}{11\!\cdots\!24}a^{6}-\frac{15\!\cdots\!33}{59\!\cdots\!12}a^{5}+\frac{16\!\cdots\!21}{11\!\cdots\!24}a^{4}-\frac{44\!\cdots\!71}{14\!\cdots\!28}a^{3}-\frac{34\!\cdots\!77}{11\!\cdots\!24}a^{2}+\frac{26\!\cdots\!59}{59\!\cdots\!12}a-\frac{14\!\cdots\!45}{29\!\cdots\!56}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{15\!\cdots\!73}{29\!\cdots\!56}a^{26}-\frac{12\!\cdots\!05}{29\!\cdots\!56}a^{25}+\frac{77\!\cdots\!21}{59\!\cdots\!12}a^{24}-\frac{19\!\cdots\!83}{24\!\cdots\!38}a^{23}-\frac{78\!\cdots\!57}{11\!\cdots\!28}a^{22}+\frac{12\!\cdots\!91}{49\!\cdots\!76}a^{21}-\frac{84\!\cdots\!93}{19\!\cdots\!04}a^{20}+\frac{46\!\cdots\!08}{12\!\cdots\!69}a^{19}+\frac{89\!\cdots\!89}{19\!\cdots\!04}a^{18}-\frac{96\!\cdots\!81}{14\!\cdots\!28}a^{17}+\frac{13\!\cdots\!67}{14\!\cdots\!28}a^{16}-\frac{25\!\cdots\!11}{29\!\cdots\!56}a^{15}+\frac{60\!\cdots\!73}{59\!\cdots\!12}a^{14}-\frac{11\!\cdots\!15}{74\!\cdots\!14}a^{13}+\frac{10\!\cdots\!65}{59\!\cdots\!12}a^{12}+\frac{47\!\cdots\!19}{29\!\cdots\!56}a^{11}-\frac{11\!\cdots\!21}{14\!\cdots\!28}a^{10}+\frac{22\!\cdots\!09}{29\!\cdots\!56}a^{9}+\frac{68\!\cdots\!91}{59\!\cdots\!12}a^{8}-\frac{10\!\cdots\!29}{14\!\cdots\!28}a^{7}+\frac{32\!\cdots\!45}{59\!\cdots\!12}a^{6}-\frac{27\!\cdots\!07}{29\!\cdots\!56}a^{5}-\frac{57\!\cdots\!25}{29\!\cdots\!56}a^{4}+\frac{25\!\cdots\!37}{14\!\cdots\!28}a^{3}+\frac{13\!\cdots\!43}{59\!\cdots\!12}a^{2}-\frac{13\!\cdots\!33}{29\!\cdots\!56}a+\frac{89\!\cdots\!91}{14\!\cdots\!28}$, $\frac{63\!\cdots\!27}{13\!\cdots\!36}a^{26}-\frac{99\!\cdots\!25}{19\!\cdots\!04}a^{25}+\frac{97\!\cdots\!87}{44\!\cdots\!12}a^{24}-\frac{14\!\cdots\!47}{33\!\cdots\!84}a^{23}-\frac{28\!\cdots\!45}{13\!\cdots\!36}a^{22}+\frac{11\!\cdots\!35}{33\!\cdots\!84}a^{21}-\frac{70\!\cdots\!65}{66\!\cdots\!68}a^{20}+\frac{59\!\cdots\!25}{33\!\cdots\!84}a^{19}-\frac{25\!\cdots\!47}{13\!\cdots\!36}a^{18}+\frac{47\!\cdots\!61}{66\!\cdots\!68}a^{17}+\frac{56\!\cdots\!63}{39\!\cdots\!08}a^{16}-\frac{22\!\cdots\!31}{66\!\cdots\!68}a^{15}+\frac{41\!\cdots\!43}{83\!\cdots\!46}a^{14}-\frac{13\!\cdots\!49}{19\!\cdots\!04}a^{13}+\frac{39\!\cdots\!33}{44\!\cdots\!12}a^{12}-\frac{41\!\cdots\!55}{55\!\cdots\!64}a^{11}-\frac{16\!\cdots\!39}{39\!\cdots\!08}a^{10}+\frac{49\!\cdots\!55}{22\!\cdots\!56}a^{9}-\frac{18\!\cdots\!49}{66\!\cdots\!68}a^{8}+\frac{27\!\cdots\!75}{19\!\cdots\!04}a^{7}+\frac{32\!\cdots\!03}{44\!\cdots\!12}a^{6}-\frac{11\!\cdots\!67}{66\!\cdots\!68}a^{5}+\frac{58\!\cdots\!77}{39\!\cdots\!08}a^{4}-\frac{73\!\cdots\!41}{11\!\cdots\!28}a^{3}+\frac{64\!\cdots\!55}{44\!\cdots\!12}a^{2}-\frac{65\!\cdots\!57}{19\!\cdots\!04}a+\frac{78\!\cdots\!57}{33\!\cdots\!84}$, $\frac{53\!\cdots\!51}{11\!\cdots\!24}a^{26}-\frac{15\!\cdots\!02}{37\!\cdots\!07}a^{25}+\frac{17\!\cdots\!45}{11\!\cdots\!24}a^{24}-\frac{18\!\cdots\!37}{99\!\cdots\!52}a^{23}-\frac{22\!\cdots\!23}{44\!\cdots\!12}a^{22}+\frac{53\!\cdots\!63}{19\!\cdots\!04}a^{21}-\frac{11\!\cdots\!49}{19\!\cdots\!04}a^{20}+\frac{15\!\cdots\!93}{19\!\cdots\!04}a^{19}-\frac{20\!\cdots\!85}{39\!\cdots\!08}a^{18}-\frac{14\!\cdots\!53}{59\!\cdots\!12}a^{17}+\frac{12\!\cdots\!77}{11\!\cdots\!24}a^{16}-\frac{57\!\cdots\!96}{37\!\cdots\!07}a^{15}+\frac{61\!\cdots\!53}{29\!\cdots\!56}a^{14}-\frac{21\!\cdots\!55}{74\!\cdots\!14}a^{13}+\frac{43\!\cdots\!23}{11\!\cdots\!24}a^{12}-\frac{34\!\cdots\!73}{29\!\cdots\!56}a^{11}-\frac{75\!\cdots\!89}{11\!\cdots\!24}a^{10}+\frac{34\!\cdots\!75}{29\!\cdots\!56}a^{9}-\frac{44\!\cdots\!07}{59\!\cdots\!12}a^{8}-\frac{19\!\cdots\!09}{14\!\cdots\!28}a^{7}+\frac{75\!\cdots\!09}{11\!\cdots\!24}a^{6}-\frac{36\!\cdots\!43}{59\!\cdots\!12}a^{5}+\frac{35\!\cdots\!19}{11\!\cdots\!24}a^{4}-\frac{21\!\cdots\!55}{59\!\cdots\!12}a^{3}+\frac{89\!\cdots\!37}{11\!\cdots\!24}a^{2}-\frac{75\!\cdots\!39}{59\!\cdots\!12}a+\frac{49\!\cdots\!81}{29\!\cdots\!56}$, $\frac{56\!\cdots\!77}{11\!\cdots\!24}a^{26}+\frac{12\!\cdots\!77}{29\!\cdots\!56}a^{25}-\frac{18\!\cdots\!11}{11\!\cdots\!24}a^{24}+\frac{19\!\cdots\!17}{99\!\cdots\!52}a^{23}+\frac{69\!\cdots\!19}{13\!\cdots\!36}a^{22}-\frac{56\!\cdots\!19}{19\!\cdots\!04}a^{21}+\frac{12\!\cdots\!37}{19\!\cdots\!04}a^{20}-\frac{16\!\cdots\!17}{19\!\cdots\!04}a^{19}+\frac{23\!\cdots\!75}{39\!\cdots\!08}a^{18}+\frac{13\!\cdots\!07}{59\!\cdots\!12}a^{17}-\frac{13\!\cdots\!91}{11\!\cdots\!24}a^{16}+\frac{50\!\cdots\!17}{29\!\cdots\!56}a^{15}-\frac{84\!\cdots\!86}{37\!\cdots\!07}a^{14}+\frac{93\!\cdots\!65}{29\!\cdots\!56}a^{13}-\frac{47\!\cdots\!53}{11\!\cdots\!24}a^{12}+\frac{41\!\cdots\!69}{29\!\cdots\!56}a^{11}+\frac{78\!\cdots\!87}{11\!\cdots\!24}a^{10}-\frac{18\!\cdots\!05}{14\!\cdots\!28}a^{9}+\frac{50\!\cdots\!07}{59\!\cdots\!12}a^{8}+\frac{25\!\cdots\!43}{29\!\cdots\!56}a^{7}-\frac{79\!\cdots\!51}{11\!\cdots\!24}a^{6}+\frac{40\!\cdots\!69}{59\!\cdots\!12}a^{5}-\frac{41\!\cdots\!09}{11\!\cdots\!24}a^{4}+\frac{35\!\cdots\!67}{59\!\cdots\!12}a^{3}-\frac{14\!\cdots\!35}{11\!\cdots\!24}a^{2}+\frac{72\!\cdots\!49}{59\!\cdots\!12}a-\frac{61\!\cdots\!39}{29\!\cdots\!56}$, $\frac{16\!\cdots\!35}{11\!\cdots\!24}a^{26}+\frac{77\!\cdots\!53}{59\!\cdots\!12}a^{25}-\frac{58\!\cdots\!33}{11\!\cdots\!24}a^{24}+\frac{66\!\cdots\!89}{99\!\cdots\!52}a^{23}+\frac{19\!\cdots\!01}{13\!\cdots\!36}a^{22}-\frac{87\!\cdots\!77}{99\!\cdots\!52}a^{21}+\frac{40\!\cdots\!19}{19\!\cdots\!04}a^{20}-\frac{35\!\cdots\!31}{12\!\cdots\!69}a^{19}+\frac{86\!\cdots\!29}{39\!\cdots\!08}a^{18}+\frac{20\!\cdots\!79}{59\!\cdots\!12}a^{17}-\frac{39\!\cdots\!13}{11\!\cdots\!24}a^{16}+\frac{33\!\cdots\!15}{59\!\cdots\!12}a^{15}-\frac{56\!\cdots\!59}{74\!\cdots\!14}a^{14}+\frac{61\!\cdots\!61}{59\!\cdots\!12}a^{13}-\frac{15\!\cdots\!75}{11\!\cdots\!24}a^{12}+\frac{92\!\cdots\!95}{14\!\cdots\!28}a^{11}+\frac{22\!\cdots\!93}{11\!\cdots\!24}a^{10}-\frac{24\!\cdots\!09}{59\!\cdots\!12}a^{9}+\frac{18\!\cdots\!29}{59\!\cdots\!12}a^{8}-\frac{86\!\cdots\!47}{59\!\cdots\!12}a^{7}-\frac{25\!\cdots\!41}{11\!\cdots\!24}a^{6}+\frac{14\!\cdots\!79}{59\!\cdots\!12}a^{5}-\frac{16\!\cdots\!07}{11\!\cdots\!24}a^{4}+\frac{78\!\cdots\!57}{29\!\cdots\!56}a^{3}+\frac{27\!\cdots\!27}{11\!\cdots\!24}a^{2}-\frac{59\!\cdots\!45}{59\!\cdots\!12}a-\frac{16\!\cdots\!61}{29\!\cdots\!56}$, $\frac{46\!\cdots\!83}{11\!\cdots\!24}a^{26}+\frac{13\!\cdots\!59}{59\!\cdots\!12}a^{25}-\frac{23\!\cdots\!73}{11\!\cdots\!24}a^{24}-\frac{10\!\cdots\!89}{49\!\cdots\!76}a^{23}+\frac{10\!\cdots\!69}{13\!\cdots\!36}a^{22}-\frac{73\!\cdots\!69}{99\!\cdots\!52}a^{21}-\frac{34\!\cdots\!77}{19\!\cdots\!04}a^{20}+\frac{65\!\cdots\!13}{99\!\cdots\!52}a^{19}-\frac{44\!\cdots\!95}{39\!\cdots\!08}a^{18}+\frac{58\!\cdots\!57}{59\!\cdots\!12}a^{17}+\frac{63\!\cdots\!75}{11\!\cdots\!24}a^{16}-\frac{60\!\cdots\!57}{59\!\cdots\!12}a^{15}+\frac{21\!\cdots\!67}{14\!\cdots\!28}a^{14}-\frac{11\!\cdots\!69}{59\!\cdots\!12}a^{13}+\frac{35\!\cdots\!85}{11\!\cdots\!24}a^{12}-\frac{19\!\cdots\!13}{29\!\cdots\!56}a^{11}+\frac{63\!\cdots\!65}{11\!\cdots\!24}a^{10}+\frac{43\!\cdots\!67}{59\!\cdots\!12}a^{9}-\frac{10\!\cdots\!51}{59\!\cdots\!12}a^{8}+\frac{66\!\cdots\!79}{59\!\cdots\!12}a^{7}+\frac{17\!\cdots\!07}{11\!\cdots\!24}a^{6}-\frac{49\!\cdots\!03}{59\!\cdots\!12}a^{5}+\frac{98\!\cdots\!09}{11\!\cdots\!24}a^{4}-\frac{10\!\cdots\!27}{29\!\cdots\!56}a^{3}-\frac{38\!\cdots\!85}{11\!\cdots\!24}a^{2}-\frac{18\!\cdots\!21}{59\!\cdots\!12}a-\frac{80\!\cdots\!45}{29\!\cdots\!56}$, $\frac{34\!\cdots\!29}{11\!\cdots\!24}a^{26}+\frac{15\!\cdots\!31}{59\!\cdots\!12}a^{25}-\frac{11\!\cdots\!97}{11\!\cdots\!24}a^{24}+\frac{12\!\cdots\!00}{12\!\cdots\!69}a^{23}+\frac{16\!\cdots\!13}{44\!\cdots\!12}a^{22}-\frac{21\!\cdots\!24}{12\!\cdots\!69}a^{21}+\frac{17\!\cdots\!95}{49\!\cdots\!76}a^{20}-\frac{39\!\cdots\!47}{99\!\cdots\!52}a^{19}+\frac{62\!\cdots\!81}{39\!\cdots\!08}a^{18}+\frac{20\!\cdots\!35}{59\!\cdots\!12}a^{17}-\frac{88\!\cdots\!07}{11\!\cdots\!24}a^{16}+\frac{51\!\cdots\!05}{59\!\cdots\!12}a^{15}-\frac{59\!\cdots\!27}{59\!\cdots\!12}a^{14}+\frac{83\!\cdots\!09}{59\!\cdots\!12}a^{13}-\frac{20\!\cdots\!27}{11\!\cdots\!24}a^{12}-\frac{42\!\cdots\!93}{74\!\cdots\!14}a^{11}+\frac{59\!\cdots\!79}{11\!\cdots\!24}a^{10}-\frac{43\!\cdots\!95}{59\!\cdots\!12}a^{9}+\frac{73\!\cdots\!67}{29\!\cdots\!56}a^{8}+\frac{22\!\cdots\!45}{59\!\cdots\!12}a^{7}-\frac{63\!\cdots\!77}{11\!\cdots\!24}a^{6}+\frac{17\!\cdots\!97}{59\!\cdots\!12}a^{5}-\frac{15\!\cdots\!33}{11\!\cdots\!24}a^{4}-\frac{18\!\cdots\!05}{14\!\cdots\!28}a^{3}+\frac{55\!\cdots\!63}{11\!\cdots\!24}a^{2}+\frac{25\!\cdots\!03}{59\!\cdots\!12}a+\frac{10\!\cdots\!63}{29\!\cdots\!56}$, $\frac{40\!\cdots\!53}{13\!\cdots\!36}a^{26}-\frac{54\!\cdots\!47}{19\!\cdots\!04}a^{25}+\frac{39\!\cdots\!85}{39\!\cdots\!08}a^{24}-\frac{40\!\cdots\!99}{33\!\cdots\!84}a^{23}-\frac{15\!\cdots\!33}{44\!\cdots\!12}a^{22}+\frac{75\!\cdots\!38}{41\!\cdots\!23}a^{21}-\frac{87\!\cdots\!19}{22\!\cdots\!56}a^{20}+\frac{17\!\cdots\!81}{33\!\cdots\!84}a^{19}-\frac{15\!\cdots\!07}{44\!\cdots\!12}a^{18}-\frac{10\!\cdots\!57}{66\!\cdots\!68}a^{17}+\frac{27\!\cdots\!33}{39\!\cdots\!08}a^{16}-\frac{20\!\cdots\!01}{19\!\cdots\!04}a^{15}+\frac{15\!\cdots\!09}{11\!\cdots\!28}a^{14}-\frac{38\!\cdots\!59}{19\!\cdots\!04}a^{13}+\frac{97\!\cdots\!43}{39\!\cdots\!08}a^{12}-\frac{31\!\cdots\!02}{41\!\cdots\!23}a^{11}-\frac{16\!\cdots\!13}{39\!\cdots\!08}a^{10}+\frac{15\!\cdots\!79}{19\!\cdots\!04}a^{9}-\frac{33\!\cdots\!33}{66\!\cdots\!68}a^{8}-\frac{14\!\cdots\!39}{19\!\cdots\!04}a^{7}+\frac{16\!\cdots\!57}{39\!\cdots\!08}a^{6}-\frac{92\!\cdots\!63}{22\!\cdots\!56}a^{5}+\frac{83\!\cdots\!83}{39\!\cdots\!08}a^{4}-\frac{40\!\cdots\!33}{12\!\cdots\!69}a^{3}+\frac{36\!\cdots\!13}{44\!\cdots\!12}a^{2}-\frac{12\!\cdots\!83}{19\!\cdots\!04}a+\frac{11\!\cdots\!21}{99\!\cdots\!52}$, $\frac{42\!\cdots\!65}{13\!\cdots\!36}a^{26}-\frac{36\!\cdots\!26}{12\!\cdots\!69}a^{25}+\frac{47\!\cdots\!57}{44\!\cdots\!12}a^{24}-\frac{14\!\cdots\!85}{11\!\cdots\!28}a^{23}-\frac{47\!\cdots\!23}{13\!\cdots\!36}a^{22}+\frac{12\!\cdots\!97}{66\!\cdots\!68}a^{21}-\frac{28\!\cdots\!75}{66\!\cdots\!68}a^{20}+\frac{37\!\cdots\!53}{66\!\cdots\!68}a^{19}-\frac{17\!\cdots\!67}{44\!\cdots\!12}a^{18}-\frac{34\!\cdots\!81}{22\!\cdots\!56}a^{17}+\frac{29\!\cdots\!53}{39\!\cdots\!08}a^{16}-\frac{37\!\cdots\!15}{33\!\cdots\!84}a^{15}+\frac{25\!\cdots\!25}{16\!\cdots\!92}a^{14}-\frac{26\!\cdots\!78}{12\!\cdots\!69}a^{13}+\frac{35\!\cdots\!45}{13\!\cdots\!36}a^{12}-\frac{29\!\cdots\!21}{33\!\cdots\!84}a^{11}-\frac{17\!\cdots\!93}{39\!\cdots\!08}a^{10}+\frac{34\!\cdots\!97}{41\!\cdots\!23}a^{9}-\frac{37\!\cdots\!19}{66\!\cdots\!68}a^{8}-\frac{32\!\cdots\!19}{49\!\cdots\!76}a^{7}+\frac{59\!\cdots\!59}{13\!\cdots\!36}a^{6}-\frac{29\!\cdots\!97}{66\!\cdots\!68}a^{5}+\frac{91\!\cdots\!63}{39\!\cdots\!08}a^{4}-\frac{82\!\cdots\!17}{22\!\cdots\!56}a^{3}+\frac{34\!\cdots\!37}{44\!\cdots\!12}a^{2}-\frac{16\!\cdots\!83}{19\!\cdots\!04}a+\frac{12\!\cdots\!61}{11\!\cdots\!28}$, $\frac{34\!\cdots\!65}{11\!\cdots\!24}a^{26}+\frac{14\!\cdots\!39}{59\!\cdots\!12}a^{25}-\frac{97\!\cdots\!99}{11\!\cdots\!24}a^{24}+\frac{66\!\cdots\!29}{99\!\cdots\!52}a^{23}+\frac{17\!\cdots\!41}{44\!\cdots\!12}a^{22}-\frac{79\!\cdots\!75}{49\!\cdots\!76}a^{21}+\frac{57\!\cdots\!15}{19\!\cdots\!04}a^{20}-\frac{70\!\cdots\!99}{24\!\cdots\!38}a^{19}+\frac{68\!\cdots\!39}{39\!\cdots\!08}a^{18}+\frac{25\!\cdots\!69}{59\!\cdots\!12}a^{17}-\frac{83\!\cdots\!11}{11\!\cdots\!24}a^{16}+\frac{41\!\cdots\!51}{59\!\cdots\!12}a^{15}-\frac{21\!\cdots\!69}{29\!\cdots\!56}a^{14}+\frac{59\!\cdots\!75}{59\!\cdots\!12}a^{13}-\frac{13\!\cdots\!17}{11\!\cdots\!24}a^{12}-\frac{29\!\cdots\!23}{37\!\cdots\!07}a^{11}+\frac{58\!\cdots\!59}{11\!\cdots\!24}a^{10}-\frac{35\!\cdots\!97}{59\!\cdots\!12}a^{9}+\frac{43\!\cdots\!93}{59\!\cdots\!12}a^{8}+\frac{28\!\cdots\!07}{59\!\cdots\!12}a^{7}-\frac{62\!\cdots\!27}{11\!\cdots\!24}a^{6}+\frac{13\!\cdots\!57}{59\!\cdots\!12}a^{5}+\frac{94\!\cdots\!35}{11\!\cdots\!24}a^{4}-\frac{69\!\cdots\!44}{37\!\cdots\!07}a^{3}+\frac{80\!\cdots\!09}{11\!\cdots\!24}a^{2}+\frac{97\!\cdots\!01}{59\!\cdots\!12}a-\frac{94\!\cdots\!51}{29\!\cdots\!56}$, $\frac{89\!\cdots\!99}{11\!\cdots\!24}a^{26}-\frac{10\!\cdots\!47}{14\!\cdots\!28}a^{25}+\frac{30\!\cdots\!21}{11\!\cdots\!24}a^{24}-\frac{33\!\cdots\!23}{99\!\cdots\!52}a^{23}-\frac{10\!\cdots\!77}{13\!\cdots\!36}a^{22}+\frac{91\!\cdots\!47}{19\!\cdots\!04}a^{21}-\frac{20\!\cdots\!05}{19\!\cdots\!04}a^{20}+\frac{28\!\cdots\!53}{19\!\cdots\!04}a^{19}-\frac{41\!\cdots\!45}{39\!\cdots\!08}a^{18}-\frac{15\!\cdots\!65}{59\!\cdots\!12}a^{17}+\frac{21\!\cdots\!37}{11\!\cdots\!24}a^{16}-\frac{21\!\cdots\!67}{74\!\cdots\!14}a^{15}+\frac{11\!\cdots\!75}{29\!\cdots\!56}a^{14}-\frac{19\!\cdots\!12}{37\!\cdots\!07}a^{13}+\frac{80\!\cdots\!87}{11\!\cdots\!24}a^{12}-\frac{83\!\cdots\!83}{29\!\cdots\!56}a^{11}-\frac{12\!\cdots\!37}{11\!\cdots\!24}a^{10}+\frac{61\!\cdots\!55}{29\!\cdots\!56}a^{9}-\frac{91\!\cdots\!11}{59\!\cdots\!12}a^{8}-\frac{77\!\cdots\!71}{14\!\cdots\!28}a^{7}+\frac{12\!\cdots\!09}{11\!\cdots\!24}a^{6}-\frac{70\!\cdots\!11}{59\!\cdots\!12}a^{5}+\frac{77\!\cdots\!95}{11\!\cdots\!24}a^{4}-\frac{85\!\cdots\!31}{59\!\cdots\!12}a^{3}+\frac{29\!\cdots\!61}{11\!\cdots\!24}a^{2}-\frac{13\!\cdots\!27}{59\!\cdots\!12}a+\frac{14\!\cdots\!13}{29\!\cdots\!56}$, $\frac{63\!\cdots\!69}{59\!\cdots\!12}a^{26}+\frac{37\!\cdots\!88}{37\!\cdots\!07}a^{25}-\frac{57\!\cdots\!11}{14\!\cdots\!28}a^{24}+\frac{27\!\cdots\!43}{49\!\cdots\!76}a^{23}+\frac{70\!\cdots\!31}{66\!\cdots\!68}a^{22}-\frac{34\!\cdots\!57}{49\!\cdots\!76}a^{21}+\frac{32\!\cdots\!17}{19\!\cdots\!04}a^{20}-\frac{28\!\cdots\!58}{12\!\cdots\!69}a^{19}+\frac{17\!\cdots\!97}{99\!\cdots\!52}a^{18}+\frac{74\!\cdots\!17}{29\!\cdots\!56}a^{17}-\frac{16\!\cdots\!69}{59\!\cdots\!12}a^{16}+\frac{67\!\cdots\!91}{14\!\cdots\!28}a^{15}-\frac{36\!\cdots\!67}{59\!\cdots\!12}a^{14}+\frac{25\!\cdots\!01}{29\!\cdots\!56}a^{13}-\frac{32\!\cdots\!97}{29\!\cdots\!56}a^{12}+\frac{16\!\cdots\!75}{29\!\cdots\!56}a^{11}+\frac{87\!\cdots\!49}{59\!\cdots\!12}a^{10}-\frac{50\!\cdots\!21}{14\!\cdots\!28}a^{9}+\frac{16\!\cdots\!73}{59\!\cdots\!12}a^{8}-\frac{41\!\cdots\!73}{29\!\cdots\!56}a^{7}-\frac{25\!\cdots\!45}{14\!\cdots\!28}a^{6}+\frac{14\!\cdots\!65}{74\!\cdots\!14}a^{5}-\frac{67\!\cdots\!29}{59\!\cdots\!12}a^{4}+\frac{37\!\cdots\!25}{14\!\cdots\!28}a^{3}-\frac{34\!\cdots\!15}{29\!\cdots\!56}a^{2}+\frac{64\!\cdots\!15}{14\!\cdots\!28}a-\frac{57\!\cdots\!61}{74\!\cdots\!14}$, $\frac{34\!\cdots\!69}{29\!\cdots\!56}a^{26}+\frac{30\!\cdots\!87}{29\!\cdots\!56}a^{25}-\frac{52\!\cdots\!93}{14\!\cdots\!28}a^{24}+\frac{36\!\cdots\!59}{99\!\cdots\!52}a^{23}+\frac{59\!\cdots\!69}{41\!\cdots\!23}a^{22}-\frac{82\!\cdots\!55}{12\!\cdots\!69}a^{21}+\frac{66\!\cdots\!79}{49\!\cdots\!76}a^{20}-\frac{15\!\cdots\!63}{99\!\cdots\!52}a^{19}+\frac{93\!\cdots\!86}{12\!\cdots\!69}a^{18}+\frac{31\!\cdots\!35}{29\!\cdots\!56}a^{17}-\frac{19\!\cdots\!71}{74\!\cdots\!14}a^{16}+\frac{24\!\cdots\!83}{74\!\cdots\!14}a^{15}-\frac{63\!\cdots\!55}{14\!\cdots\!28}a^{14}+\frac{17\!\cdots\!89}{29\!\cdots\!56}a^{13}-\frac{53\!\cdots\!01}{74\!\cdots\!14}a^{12}+\frac{65\!\cdots\!15}{29\!\cdots\!56}a^{11}+\frac{13\!\cdots\!11}{74\!\cdots\!14}a^{10}-\frac{97\!\cdots\!04}{37\!\cdots\!07}a^{9}+\frac{82\!\cdots\!27}{74\!\cdots\!14}a^{8}+\frac{27\!\cdots\!93}{29\!\cdots\!56}a^{7}-\frac{24\!\cdots\!15}{14\!\cdots\!28}a^{6}+\frac{34\!\cdots\!31}{29\!\cdots\!56}a^{5}-\frac{11\!\cdots\!04}{37\!\cdots\!07}a^{4}-\frac{13\!\cdots\!35}{74\!\cdots\!14}a^{3}+\frac{68\!\cdots\!05}{29\!\cdots\!56}a^{2}+\frac{61\!\cdots\!51}{14\!\cdots\!28}a+\frac{92\!\cdots\!59}{74\!\cdots\!14}$, $\frac{84\!\cdots\!71}{11\!\cdots\!24}a^{26}+\frac{19\!\cdots\!07}{29\!\cdots\!56}a^{25}-\frac{28\!\cdots\!79}{11\!\cdots\!24}a^{24}+\frac{29\!\cdots\!11}{99\!\cdots\!52}a^{23}+\frac{10\!\cdots\!33}{13\!\cdots\!36}a^{22}-\frac{84\!\cdots\!07}{19\!\cdots\!04}a^{21}+\frac{46\!\cdots\!87}{49\!\cdots\!76}a^{20}-\frac{24\!\cdots\!53}{19\!\cdots\!04}a^{19}+\frac{34\!\cdots\!43}{39\!\cdots\!08}a^{18}+\frac{20\!\cdots\!77}{59\!\cdots\!12}a^{17}-\frac{19\!\cdots\!73}{11\!\cdots\!24}a^{16}+\frac{74\!\cdots\!63}{29\!\cdots\!56}a^{15}-\frac{20\!\cdots\!69}{59\!\cdots\!12}a^{14}+\frac{69\!\cdots\!21}{14\!\cdots\!28}a^{13}-\frac{70\!\cdots\!81}{11\!\cdots\!24}a^{12}+\frac{30\!\cdots\!11}{14\!\cdots\!28}a^{11}+\frac{11\!\cdots\!61}{11\!\cdots\!24}a^{10}-\frac{69\!\cdots\!81}{37\!\cdots\!07}a^{9}+\frac{37\!\cdots\!79}{29\!\cdots\!56}a^{8}+\frac{20\!\cdots\!83}{14\!\cdots\!28}a^{7}-\frac{11\!\cdots\!59}{11\!\cdots\!24}a^{6}+\frac{59\!\cdots\!93}{59\!\cdots\!12}a^{5}-\frac{61\!\cdots\!43}{11\!\cdots\!24}a^{4}+\frac{49\!\cdots\!03}{59\!\cdots\!12}a^{3}-\frac{18\!\cdots\!79}{11\!\cdots\!24}a^{2}+\frac{11\!\cdots\!09}{59\!\cdots\!12}a-\frac{10\!\cdots\!63}{29\!\cdots\!56}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 56929818889.756966 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 56929818889.756966 \cdot 1}{2\cdot\sqrt{13177032454057536000000000000000000000000}}\cr\approx \mathstrut & 7.51016374419847 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 9*x^26 + 33*x^25 - 41*x^24 - 111*x^23 + 597*x^22 - 1314*x^21 + 1746*x^20 - 1209*x^19 - 463*x^18 + 2265*x^17 - 3507*x^16 + 4726*x^15 - 6558*x^14 + 8271*x^13 - 2855*x^12 - 13755*x^11 + 25959*x^10 - 17496*x^9 - 1668*x^8 + 13713*x^7 - 14007*x^6 + 7287*x^5 - 1335*x^4 + 331*x^3 - 255*x^2 + 42*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^3:D_6$ (as 27T128):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 324
The 17 conjugacy class representatives for $C_3^3:D_6$
Character table for $C_3^3:D_6$

Intermediate fields

3.3.2700.1, 9.3.5904900000000.1, 9.3.314928000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 9 siblings: data not computed
Degree 18 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 9.3.5904900000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.6.0.1}{6} }^{4}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.6.0.1}{6} }^{4}{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.9.0.1}{9} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{4}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.6.0.1}{6} }^{4}{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.6.0.1}{6} }^{4}{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{9}$ ${\href{/padicField/41.6.0.1}{6} }^{4}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.6.0.1}{6} }^{4}{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.6.0.1}{6} }^{4}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.6.8.3$x^{6} + 2 x^{3} + 6$$6$$1$$8$$D_{6}$$[2]_{3}^{2}$
2.12.16.13$x^{12} + 10 x^{11} + 47 x^{10} + 144 x^{9} + 330 x^{8} + 578 x^{7} + 785 x^{6} + 830 x^{5} + 530 x^{4} - 64 x^{3} - 189 x^{2} - 30 x + 25$$6$$2$$16$$D_6$$[2]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.7.5$x^{6} + 6 x^{2} + 3$$6$$1$$7$$D_{6}$$[3/2]_{2}^{2}$
3.6.6.4$x^{6} + 48 x^{4} + 6 x^{3} + 36 x^{2} + 36 x + 9$$3$$2$$6$$D_{6}$$[3/2]_{2}^{2}$
3.12.14.11$x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 792 x^{8} + 1728 x^{7} + 2918 x^{6} + 3684 x^{5} + 3156 x^{4} + 1376 x^{3} - 36 x^{2} - 168 x + 25$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
\(5\) Copy content Toggle raw display Deg $27$$9$$3$$24$