Normalized defining polynomial
\( x^{4} + 2x^{2} - 28x + 98 \)
Invariants
Degree: | $4$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(100608\) \(\medspace = 2^{8}\cdot 3\cdot 131\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.81\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}3^{1/2}131^{1/2}\approx 79.29691040639604$ | ||
Ramified primes: | \(2\), \(3\), \(131\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{393}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{49}a^{3}+\frac{1}{7}a^{2}+\frac{2}{49}a-\frac{2}{7}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $1$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental unit: | $\frac{13}{49}a^{3}-\frac{1}{7}a^{2}-\frac{121}{49}a+\frac{51}{7}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6.51620844569 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 6.51620844569 \cdot 2}{2\cdot\sqrt{100608}}\cr\approx \mathstrut & 0.811032853921 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_{4}$ |
Character table for $D_{4}$ |
Intermediate fields
\(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | 8.0.1563328092635136.2 |
Degree 4 sibling: | 4.2.4942368.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.8.2 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
\(3\) | 3.2.0.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(131\) | 131.2.1.2 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
131.2.0.1 | $x^{2} + 127 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.393.2t1.a.a | $1$ | $ 3 \cdot 131 $ | \(\Q(\sqrt{393}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.3144.2t1.b.a | $1$ | $ 2^{3} \cdot 3 \cdot 131 $ | \(\Q(\sqrt{-786}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.12576.4t3.f.a | $2$ | $ 2^{5} \cdot 3 \cdot 131 $ | 4.0.100608.2 | $D_{4}$ (as 4T3) | $1$ | $0$ |