Properties

Label 4.2.16560.1
Degree 44
Signature [2,1][2, 1]
Discriminant 16560-16560
Root discriminant 11.3411.34
Ramified primes 2,3,5,232,3,5,23
Class number 11
Class group trivial
Galois group S4S_4 (as 4T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^4 + 4*x^2 - 12*x + 4)
 
gp: K = bnfinit(y^4 + 4*y^2 - 12*y + 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^4 + 4*x^2 - 12*x + 4);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^4 + 4*x^2 - 12*x + 4)
 

x4+4x212x+4 x^{4} + 4x^{2} - 12x + 4 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  44
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [2,1][2, 1]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   16560-16560 =2432523\medspace = -\,2^{4}\cdot 3^{2}\cdot 5\cdot 23 Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  11.3411.34
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  27/631/251/2231/241.6976144264264262^{7/6}3^{1/2}5^{1/2}23^{1/2}\approx 41.697614426426426
Ramified primes:   22, 33, 55, 2323 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(115)\Q(\sqrt{-115})
Aut(K/Q)\Aut(K/\Q):   C1C_1
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, 12a2\frac{1}{2}a^{2}, 12a3\frac{1}{2}a^{3} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  11
Inessential primes:  None

Class group and class number

Trivial group, which has order 11

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  22
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   12a2\frac{1}{2}a^{2}, 2a32a-3 Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  12.092781486 12.092781486
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(22(2π)112.0927814861216560(1.1808803695 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{1}\cdot 12.092781486 \cdot 1}{2\cdot\sqrt{16560}}\cr\approx \mathstrut & 1.1808803695 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^4 + 4*x^2 - 12*x + 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^4 + 4*x^2 - 12*x + 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^4 + 4*x^2 - 12*x + 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^4 + 4*x^2 - 12*x + 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S4S_4 (as 4T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 5 conjugacy class representatives for S4S_4
Character table for S4S_4

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q\Q.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 6 siblings: 6.0.876024000.2, 6.2.7617600.2
Degree 8 sibling: 8.0.3626739360000.27
Degree 12 siblings: deg 12, deg 12
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R R R 3,1{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} } 4{\href{/padicField/11.4.0.1}{4} } 4{\href{/padicField/13.4.0.1}{4} } 3,1{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} } 4{\href{/padicField/19.4.0.1}{4} } R 3,1{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} } 3,1{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} } 3,1{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} } 3,1{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} } 22{\href{/padicField/43.2.0.1}{2} }^{2} 4{\href{/padicField/47.4.0.1}{4} } 3,1{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} } 3,1{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.1.4.4a1.1x4+2x+2x^{4} + 2 x + 2441144S4S_4[43,43]32[\frac{4}{3}, \frac{4}{3}]_{3}^{2}
33 Copy content Toggle raw display 3.1.2.1a1.2x2+6x^{2} + 6221111C2C_2[ ]2[\ ]_{2}
3.1.2.1a1.1x2+3x^{2} + 3221111C2C_2[ ]2[\ ]_{2}
55 Copy content Toggle raw display 5.2.1.0a1.1x2+4x+2x^{2} + 4 x + 2112200C2C_2[ ]2[\ ]^{2}
5.1.2.1a1.1x2+5x^{2} + 5221111C2C_2[ ]2[\ ]_{2}
2323 Copy content Toggle raw display 23.2.1.0a1.1x2+21x+5x^{2} + 21 x + 5112200C2C_2[ ]2[\ ]^{2}
23.1.2.1a1.1x2+23x^{2} + 23221111C2C_2[ ]2[\ ]_{2}

Artin representations

Label Dimension Conductor Artin stem field GG Ind χ(c)\chi(c)
* 1.1.1t1.a.a11 11 Q\Q C1C_1 11 11
1.115.2t1.a.a11 523 5 \cdot 23 Q(115)\Q(\sqrt{-115}) C2C_2 (as 2T1) 11 1-1
2.460.3t2.a.a22 22523 2^{2} \cdot 5 \cdot 23 3.1.460.1 S3S_3 (as 3T2) 11 00
3.1904400.6t8.a.a33 243252232 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} 4.2.16560.1 S4S_4 (as 4T5) 11 1-1
* 3.16560.4t5.a.a33 2432523 2^{4} \cdot 3^{2} \cdot 5 \cdot 23 4.2.16560.1 S4S_4 (as 4T5) 11 11

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)