Normalized defining polynomial
\( x^{6} - 3x^{5} - 46x^{4} - 81x^{3} - 11496x^{2} + 44141x + 932943 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-22800087689876656\) \(\medspace = -\,2^{4}\cdot 43^{3}\cdot 2617^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(532.50\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}43^{1/2}2617^{1/2}\approx 532.5038510015115$ | ||
Ramified primes: | \(2\), \(43\), \(2617\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-112531}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{241792705}a^{5}+\frac{23540009}{241792705}a^{4}+\frac{729913}{4934545}a^{3}+\frac{52468188}{241792705}a^{2}-\frac{4973830}{48358541}a-\frac{4980394}{21981155}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{11\!\cdots\!97}{48358541}a^{5}-\frac{14\!\cdots\!22}{48358541}a^{4}+\frac{14\!\cdots\!03}{986909}a^{3}-\frac{73\!\cdots\!38}{48358541}a^{2}-\frac{72\!\cdots\!29}{48358541}a+\frac{10\!\cdots\!61}{4396231}$, $\frac{12\!\cdots\!47}{241792705}a^{5}-\frac{14\!\cdots\!87}{241792705}a^{4}+\frac{13\!\cdots\!31}{4934545}a^{3}-\frac{63\!\cdots\!89}{241792705}a^{2}-\frac{19\!\cdots\!68}{48358541}a+\frac{12\!\cdots\!42}{21981155}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 464007.720078 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 464007.720078 \cdot 4}{2\cdot\sqrt{22800087689876656}}\cr\approx \mathstrut & 1.52449690993 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 720 |
The 11 conjugacy class representatives for $S_6$ |
Character table for $S_6$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | 6.4.450124.1 |
Degree 6 sibling: | 6.4.450124.1 |
Degree 10 sibling: | 10.4.91200350759506624.1 |
Degree 12 siblings: | deg 12, deg 12 |
Degree 15 siblings: | deg 15, deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | deg 40, deg 40, some data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | 6.4.450124.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(43\) | 43.2.1.2 | $x^{2} + 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
43.4.2.2 | $x^{4} - 1806 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
\(2617\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $4$ | $2$ | $2$ | $2$ |