Properties

Label 6.0.262885120000.3
Degree $6$
Signature $[0, 3]$
Discriminant $-262885120000$
Root discriminant \(80.04\)
Ramified primes $2,5,59$
Class number $24$
Class group [2, 12]
Galois group $S_4$ (as 6T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612)
 
gp: K = bnfinit(y^6 - 16*y^4 - 100*y^3 + 182*y^2 + 800*y + 612, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612)
 

\( x^{6} - 16x^{4} - 100x^{3} + 182x^{2} + 800x + 612 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-262885120000\) \(\medspace = -\,2^{11}\cdot 5^{4}\cdot 59^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(80.04\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}5^{2/3}59^{1/2}\approx 89.83922566626457$
Ramified primes:   \(2\), \(5\), \(59\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-118}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2902}a^{5}-\frac{719}{2902}a^{4}-\frac{531}{1451}a^{3}+\frac{126}{1451}a^{2}-\frac{541}{1451}a+\frac{511}{1451}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{12}$, which has order $24$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $2$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{939}{2902}a^{5}+\frac{1238}{1451}a^{4}-\frac{5269}{1451}a^{3}-\frac{70316}{1451}a^{2}-\frac{143798}{1451}a-\frac{88963}{1451}$, $\frac{320}{1451}a^{5}+\frac{2080}{1451}a^{4}-\frac{306}{1451}a^{3}-\frac{44146}{1451}a^{2}-\frac{96668}{1451}a-\frac{60377}{1451}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 301.582102789 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 301.582102789 \cdot 24}{2\cdot\sqrt{262885120000}}\cr\approx \mathstrut & 1.75082771952 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - 16*x^4 - 100*x^3 + 182*x^2 + 800*x + 612);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4$ (as 6T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 5 conjugacy class representatives for $S_4$
Character table for $S_4$

Intermediate fields

3.1.11800.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling algebras

Galois closure: deg 24
Twin sextic algebra: \(\Q\) $\times$ \(\Q\) $\times$ 4.2.47200.2
Degree 4 sibling: 4.2.47200.2
Degree 6 sibling: 6.2.556960000.1
Degree 8 sibling: 8.0.496327106560000.11
Degree 12 siblings: deg 12, deg 12
Minimal sibling: 4.2.47200.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ R ${\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.3.0.1}{3} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{3}$ ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.4.8.1$x^{4} + 2 x^{2} + 4 x + 10$$4$$1$$8$$C_2^2$$[2, 3]$
\(5\) Copy content Toggle raw display 5.6.4.1$x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(59\) Copy content Toggle raw display 59.2.1.1$x^{2} + 118$$2$$1$$1$$C_2$$[\ ]_{2}$
59.4.2.1$x^{4} + 116 x^{3} + 3486 x^{2} + 7076 x + 201725$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$