Normalized defining polynomial
\( x^{6} - x^{5} - 17x^{4} + 17x^{3} + 54x^{2} + 38x - 16 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(113509952\) \(\medspace = 2^{6}\cdot 17^{3}\cdot 19^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(22.00\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}17^{1/2}19^{1/2}\approx 50.83306010855534$ | ||
Ramified primes: | \(2\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{926}a^{5}-\frac{90}{463}a^{4}-\frac{207}{926}a^{3}+\frac{15}{463}a^{2}+\frac{120}{463}a-\frac{163}{463}$
Monogenic: | No | |
Index: | $4$ | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{5}{463}a^{5}+\frac{26}{463}a^{4}-\frac{109}{463}a^{3}-\frac{313}{463}a^{2}+\frac{737}{463}a-\frac{241}{463}$, $\frac{44}{463}a^{5}-\frac{49}{463}a^{4}-\frac{774}{463}a^{3}+\frac{857}{463}a^{2}+\frac{3152}{463}a+\frac{2787}{463}$, $\frac{19148}{463}a^{5}-\frac{45442}{463}a^{4}+\frac{2208617}{463}a^{3}+\frac{3541344}{463}a^{2}+\frac{1868913}{463}a-\frac{902469}{463}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 452.462969952 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 452.462969952 \cdot 1}{2\cdot\sqrt{113509952}}\cr\approx \mathstrut & 3.35317179333 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_{6}$ |
Character table for $D_{6}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.1.152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | data not computed |
Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-646}) \) $\times$ 3.1.152.1 |
Degree 6 sibling: | 6.0.17253512704.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }$ | ${\href{/padicField/5.2.0.1}{2} }^{3}$ | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | R | R | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{6}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
\(17\) | 17.6.3.1 | $x^{6} + 459 x^{5} + 70280 x^{4} + 3597823 x^{3} + 1271380 x^{2} + 4696159 x + 50437479$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
\(19\) | $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.152.2t1.b.a | $1$ | $ 2^{3} \cdot 19 $ | \(\Q(\sqrt{-38}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.2584.2t1.b.a | $1$ | $ 2^{3} \cdot 17 \cdot 19 $ | \(\Q(\sqrt{-646}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.152.3t2.b.a | $2$ | $ 2^{3} \cdot 19 $ | 3.1.152.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.43928.6t3.b.a | $2$ | $ 2^{3} \cdot 17^{2} \cdot 19 $ | 6.2.113509952.3 | $D_{6}$ (as 6T3) | $1$ | $0$ |