Normalized defining polynomial
\( x^{6} - x^{5} + 401x^{4} + 370x^{3} + 28158x^{2} - 112826x + 71381 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(3364817757007049\) \(\medspace = 7^{3}\cdot 21407^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(387.10\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{1/2}21407^{1/2}\approx 387.10334537433283$ | ||
Ramified primes: | \(7\), \(21407\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{149849}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{11}a^{3}-\frac{3}{11}a^{2}-\frac{5}{11}a+\frac{4}{11}$, $\frac{1}{847}a^{4}+\frac{16}{847}a^{3}+\frac{389}{847}a^{2}-\frac{102}{847}a-\frac{199}{847}$, $\frac{1}{288827}a^{5}-\frac{130}{288827}a^{4}-\frac{485}{26257}a^{3}+\frac{5666}{41261}a^{2}+\frac{2946}{41261}a+\frac{100202}{288827}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{6609215}{288827}a^{5}+\frac{1266129}{41261}a^{4}+\frac{34901533}{3751}a^{3}+\frac{9551973124}{288827}a^{2}+\frac{214181443804}{288827}a-\frac{177058226860}{288827}$, $\frac{15245227}{26257}a^{5}+\frac{62764519}{26257}a^{4}+\frac{3994293749}{26257}a^{3}+\frac{44540208325}{26257}a^{2}-\frac{197815395502}{26257}a+\frac{126765631215}{26257}$, $\frac{82\!\cdots\!76}{847}a^{5}-\frac{13\!\cdots\!36}{77}a^{4}+\frac{12\!\cdots\!60}{847}a^{3}-\frac{16\!\cdots\!31}{847}a^{2}+\frac{59\!\cdots\!82}{847}a-\frac{36\!\cdots\!90}{847}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 243786.875119 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 243786.875119 \cdot 4}{2\cdot\sqrt{3364817757007049}}\cr\approx \mathstrut & 1.32733110130 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 720 |
The 11 conjugacy class representatives for $S_6$ |
Character table for $S_6$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | 6.2.149849.1 |
Degree 6 sibling: | 6.2.149849.1 |
Degree 10 sibling: | 10.2.3364817757007049.2 |
Degree 12 siblings: | deg 12, deg 12 |
Degree 15 siblings: | deg 15, deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | deg 40, deg 40, some data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | 6.2.149849.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | R | ${\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\) | 7.2.1.2 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.4.2.2 | $x^{4} - 42 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
\(21407\) | Deg $6$ | $2$ | $3$ | $3$ |