Normalized defining polynomial
\( x^{6} - 3x^{5} - 101x^{4} - 938x^{3} - 3752x^{2} - 12252x + 9233 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(9251107100235625\) \(\medspace = 5^{4}\cdot 43^{3}\cdot 571^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(458.18\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{2/3}43^{1/2}571^{1/2}\approx 458.1759455643265$ | ||
Ramified primes: | \(5\), \(43\), \(571\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{24553}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2363313}a^{5}+\frac{833479}{2363313}a^{4}+\frac{977366}{2363313}a^{3}-\frac{160145}{787771}a^{2}+\frac{1099672}{2363313}a+\frac{214801}{2363313}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{894901339913288}{2363313}a^{5}-\frac{73\!\cdots\!00}{2363313}a^{4}+\frac{31\!\cdots\!97}{2363313}a^{3}-\frac{58\!\cdots\!38}{787771}a^{2}+\frac{77\!\cdots\!98}{2363313}a-\frac{42\!\cdots\!98}{2363313}$, $\frac{40160183076277}{787771}a^{5}-\frac{95691990696214}{787771}a^{4}-\frac{41\!\cdots\!07}{787771}a^{3}-\frac{40\!\cdots\!33}{787771}a^{2}-\frac{17\!\cdots\!06}{787771}a-\frac{60\!\cdots\!80}{787771}$, $\frac{31\!\cdots\!00}{2363313}a^{5}-\frac{20\!\cdots\!94}{2363313}a^{4}+\frac{21\!\cdots\!81}{2363313}a^{3}-\frac{15\!\cdots\!96}{787771}a^{2}+\frac{62\!\cdots\!37}{2363313}a-\frac{38\!\cdots\!79}{2363313}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 536421.287716 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 536421.287716 \cdot 2}{2\cdot\sqrt{9251107100235625}}\cr\approx \mathstrut & 0.880701787902 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 720 |
The 11 conjugacy class representatives for $S_6$ |
Character table for $S_6$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | 6.2.613825.1 |
Degree 6 sibling: | 6.2.613825.1 |
Degree 10 sibling: | deg 10 |
Degree 12 siblings: | deg 12, deg 12 |
Degree 15 siblings: | deg 15, deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
Degree 36 sibling: | data not computed |
Degree 40 siblings: | deg 40, deg 40, some data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | 6.2.613825.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | R | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | R | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.6.4.2 | $x^{6} + 10 x^{3} - 25$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(43\) | 43.2.1.1 | $x^{2} + 86$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
43.4.2.2 | $x^{4} - 1806 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
\(571\) | Deg $6$ | $2$ | $3$ | $3$ |