Normalized defining polynomial
\( x^{8} - 22x^{6} - 135x^{4} + 9800x^{2} + 16384 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(29371890733056\) \(\medspace = 2^{12}\cdot 3^{4}\cdot 97^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(48.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}97^{1/2}\approx 48.249352327259274$ | ||
Ramified primes: | \(2\), \(3\), \(97\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{12}a^{4}-\frac{5}{12}a^{2}-\frac{1}{2}a+\frac{1}{3}$, $\frac{1}{12}a^{5}+\frac{1}{12}a^{3}-\frac{1}{2}a^{2}-\frac{1}{6}a$, $\frac{1}{84744}a^{6}+\frac{8}{1177}a^{4}+\frac{2947}{9416}a^{2}-\frac{1}{2}a+\frac{280}{10593}$, $\frac{1}{2711808}a^{7}-\frac{1081}{451968}a^{5}+\frac{190099}{903936}a^{3}-\frac{1}{2}a^{2}-\frac{45623}{338976}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $3$ |
Class group and class number
$C_{2}\times C_{20}$, which has order $40$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{733}{2711808}a^{7}+\frac{35}{14124}a^{6}-\frac{1429}{451968}a^{5}-\frac{171}{2354}a^{4}-\frac{89561}{903936}a^{3}+\frac{1061}{4708}a^{2}-\frac{52523}{338976}a+\frac{1945}{3531}$, $\frac{733}{2711808}a^{7}-\frac{35}{14124}a^{6}-\frac{1429}{451968}a^{5}+\frac{171}{2354}a^{4}-\frac{89561}{903936}a^{3}-\frac{1061}{4708}a^{2}-\frac{52523}{338976}a-\frac{1945}{3531}$, $\frac{2276}{3531}a^{6}-\frac{28450}{3531}a^{4}-\frac{1247248}{3531}a^{2}-\frac{654979}{1177}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3836.64231843 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 3836.64231843 \cdot 40}{2\cdot\sqrt{29371890733056}}\cr\approx \mathstrut & 22.0665698835 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_4$ |
Character table for $D_4$ |
Intermediate fields
\(\Q(\sqrt{-194}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{-2}, \sqrt{97})\), 4.0.55872.4 x2, 4.2.677448.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 siblings: | 4.2.677448.1, 4.0.55872.4 |
Minimal sibling: | 4.0.55872.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.1.0.1}{1} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
\(3\) | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(97\) | 97.4.2.1 | $x^{4} + 10474 x^{3} + 27919909 x^{2} + 2585716380 x + 183392493$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
97.4.2.1 | $x^{4} + 10474 x^{3} + 27919909 x^{2} + 2585716380 x + 183392493$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.97.2t1.a.a | $1$ | $ 97 $ | \(\Q(\sqrt{97}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.776.2t1.b.a | $1$ | $ 2^{3} \cdot 97 $ | \(\Q(\sqrt{-194}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.6984.4t3.e.a | $2$ | $ 2^{3} \cdot 3^{2} \cdot 97 $ | 8.0.29371890733056.4 | $D_4$ (as 8T4) | $1$ | $0$ |