Properties

Label 8.2.2693955999488.1
Degree 88
Signature [2,3][2, 3]
Discriminant 2.694×1012-2.694\times 10^{12}
Root discriminant 35.7935.79
Ramified primes 2,13,20173,401272,13,20173,40127
Class number 11
Class group trivial
Galois group S8S_8 (as 8T50)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 6*x - 5)
 
gp: K = bnfinit(y^8 - 6*y - 5, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 6*x - 5);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 6*x - 5)
 

x86x5 x^{8} - 6x - 5 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  88
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [2,3][2, 3]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   2693955999488-2693955999488 =28132017340127\medspace = -\,2^{8}\cdot 13\cdot 20173\cdot 40127 Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  35.7935.79
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  231/28131/2201731/2401271/2220982.80193364672^{31/28}13^{1/2}20173^{1/2}40127^{1/2}\approx 220982.8019336467
Ramified primes:   22, 1313, 2017320173, 4012740127 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(10523265623\Q(\sqrt{-10523265623})
Aut(K/Q)\Aut(K/\Q):   C1C_1
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 
Narrow class group:  Trivial group, which has order 11

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  44
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   a7+a5+a4+a3+3a2+a1a^{7}+a^{5}+a^{4}+a^{3}+3a^{2}+a-1, a72a6+3a53a4+a3+2a24a1a^{7}-2a^{6}+3a^{5}-3a^{4}+a^{3}+2a^{2}-4a-1, 2a72a6+2a5a4a2+3a142a^{7}-2a^{6}+2a^{5}-a^{4}-a^{2}+3a-14, 23a713a636a5+36a4+48a379a255a+1723a^{7}-13a^{6}-36a^{5}+36a^{4}+48a^{3}-79a^{2}-55a+17 Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  2815.70995221 2815.70995221
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(22(2π)32815.70995221122693955999488(0.851064092707 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 2815.70995221 \cdot 1}{2\cdot\sqrt{2693955999488}}\cr\approx \mathstrut & 0.851064092707 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 6*x - 5)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 6*x - 5, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 6*x - 5);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 6*x - 5);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S8S_8 (as 8T50):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 40320
The 22 conjugacy class representatives for S8S_8
Character table for S8S_8

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q\Q.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 sibling: deg 16
Degree 28 sibling: deg 28
Degree 30 sibling: deg 30
Degree 35 sibling: deg 35
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 42{\href{/padicField/3.4.0.1}{4} }^{2} 6,12{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2} 7,1{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} } 42{\href{/padicField/11.4.0.1}{4} }^{2} R 6,2{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} } 7,1{\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} } 5,13{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3} 4,22{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2} 7,1{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} } 6,12{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2} 4,2,12{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2} 7,1{\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} } 32,2{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} } 4,22{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2} 32,2{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.1.8.8a1.1x8+2x+2x^{8} + 2 x + 2881188C23:(C7:C3)C_2^3:(C_7: C_3)[87,87,87]73[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]_{7}^{3}
1313 Copy content Toggle raw display Q13\Q_{13}x+11x + 11111100Trivial[ ][\ ]
13.1.2.1a1.1x2+13x^{2} + 13221111C2C_2[ ]2[\ ]_{2}
13.5.1.0a1.1x5+4x+11x^{5} + 4 x + 11115500C5C_5[ ]5[\ ]^{5}
2017320173 Copy content Toggle raw display Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 33113300C3C_3[ ]3[\ ]^{3}
Deg 33113300C3C_3[ ]3[\ ]^{3}
4012740127 Copy content Toggle raw display Q40127\Q_{40127}xx111100Trivial[ ][\ ]
Q40127\Q_{40127}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 44114400C4C_4[ ]4[\ ]^{4}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)