Properties

Label 8.2.314437188128.1
Degree $8$
Signature $[2, 3]$
Discriminant $-314437188128$
Root discriminant \(27.36\)
Ramified primes $2,7,17$
Class number $1$
Class group trivial
Galois group $S_4\wr C_2$ (as 8T47)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152)
 
gp: K = bnfinit(y^8 - 4*y^7 + 35*y^4 - 14*y^3 - 14*y^2 - 60*y - 152, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152)
 

\( x^{8} - 4x^{7} + 35x^{4} - 14x^{3} - 14x^{2} - 60x - 152 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-314437188128\) \(\medspace = -\,2^{5}\cdot 7^{6}\cdot 17^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.36\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}7^{3/4}17^{1/2}\approx 63.23191227961974$
Ramified primes:   \(2\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-2}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7}a^{4}-\frac{2}{7}a^{3}-\frac{2}{7}a^{2}+\frac{3}{7}a-\frac{3}{7}$, $\frac{1}{14}a^{5}-\frac{1}{14}a^{4}+\frac{3}{14}a^{3}+\frac{1}{14}a^{2}+\frac{2}{7}$, $\frac{1}{14}a^{6}-\frac{3}{7}a^{3}+\frac{5}{14}a^{2}-\frac{1}{7}a-\frac{2}{7}$, $\frac{1}{364}a^{7}-\frac{3}{182}a^{6}+\frac{3}{91}a^{5}-\frac{6}{91}a^{4}-\frac{177}{364}a^{3}+\frac{33}{91}a^{2}-\frac{61}{182}a+\frac{33}{91}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{364}a^{7}+\frac{5}{91}a^{6}-\frac{10}{91}a^{5}-\frac{19}{91}a^{4}+\frac{83}{364}a^{3}+\frac{27}{182}a^{2}+\frac{121}{182}a+\frac{124}{91}$, $\frac{2}{7}a^{4}-\frac{4}{7}a^{3}-\frac{4}{7}a^{2}-\frac{8}{7}a-\frac{13}{7}$, $\frac{2}{91}a^{7}-\frac{38}{91}a^{6}+\frac{22}{13}a^{5}-\frac{100}{91}a^{4}-\frac{237}{91}a^{3}-\frac{165}{91}a^{2}+\frac{58}{13}a+\frac{927}{91}$, $\frac{6}{91}a^{7}+\frac{3}{91}a^{6}-\frac{32}{91}a^{5}-\frac{157}{91}a^{4}-\frac{100}{91}a^{3}+\frac{298}{91}a^{2}+\frac{932}{91}a+\frac{753}{91}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3149.67293746 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 3149.67293746 \cdot 1}{2\cdot\sqrt{314437188128}}\cr\approx \mathstrut & 2.78655813294 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 4*x^7 + 35*x^4 - 14*x^3 - 14*x^2 - 60*x - 152);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4\wr C_2$ (as 8T47):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1152
The 20 conjugacy class representatives for $S_4\wr C_2$
Character table for $S_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{17}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ ${\href{/padicField/5.8.0.1}{8} }$ R ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ R ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.8.0.1}{8} }$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }$ ${\href{/padicField/37.8.0.1}{8} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.3.3$x^{2} + 2$$2$$1$$3$$C_2$$[3]$
2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
\(7\) Copy content Toggle raw display 7.8.6.3$x^{8} - 154 x^{4} - 1421$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
\(17\) Copy content Toggle raw display 17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.6.3.1$x^{6} + 459 x^{5} + 70280 x^{4} + 3597823 x^{3} + 1271380 x^{2} + 4696159 x + 50437479$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
1.136.2t1.b.a$1$ $ 2^{3} \cdot 17 $ \(\Q(\sqrt{-34}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.17.2t1.a.a$1$ $ 17 $ \(\Q(\sqrt{17}) \) $C_2$ (as 2T1) $1$ $1$
2.6664.4t3.a.a$2$ $ 2^{3} \cdot 7^{2} \cdot 17 $ 4.0.53312.1 $D_{4}$ (as 4T3) $1$ $0$
4.61628672.12t34.b.a$4$ $ 2^{8} \cdot 7^{2} \cdot 17^{3}$ 6.0.1705984.1 $C_3^2:D_4$ (as 6T13) $1$ $0$
4.7250432.12t34.b.a$4$ $ 2^{9} \cdot 7^{2} \cdot 17^{2}$ 6.0.1705984.1 $C_3^2:D_4$ (as 6T13) $1$ $-2$
4.213248.6t13.b.a$4$ $ 2^{8} \cdot 7^{2} \cdot 17 $ 6.0.1705984.1 $C_3^2:D_4$ (as 6T13) $1$ $0$
4.453152.6t13.b.a$4$ $ 2^{5} \cdot 7^{2} \cdot 17^{2}$ 6.0.1705984.1 $C_3^2:D_4$ (as 6T13) $1$ $2$
6.48316878848.12t201.a.a$6$ $ 2^{12} \cdot 7^{4} \cdot 17^{3}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $2$
6.189...416.12t202.a.a$6$ $ 2^{15} \cdot 7^{6} \cdot 17^{3}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $0$
* 6.18496305184.8t47.a.a$6$ $ 2^{5} \cdot 7^{6} \cdot 17^{3}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $0$
6.3019804928.12t200.a.a$6$ $ 2^{8} \cdot 7^{4} \cdot 17^{3}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $-2$
9.473...104.16t1294.a.a$9$ $ 2^{13} \cdot 7^{6} \cdot 17^{3}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $-1$
9.606...312.18t272.a.a$9$ $ 2^{20} \cdot 7^{6} \cdot 17^{3}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $1$
9.297...856.18t273.a.a$9$ $ 2^{20} \cdot 7^{6} \cdot 17^{6}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $1$
9.232...952.18t274.a.a$9$ $ 2^{13} \cdot 7^{6} \cdot 17^{6}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $-1$
12.228...192.36t1763.a.a$12$ $ 2^{25} \cdot 7^{10} \cdot 17^{6}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $-2$
12.142...512.24t2821.a.a$12$ $ 2^{21} \cdot 7^{10} \cdot 17^{6}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $2$
18.690...176.36t1758.a.a$18$ $ 2^{33} \cdot 7^{14} \cdot 17^{9}$ 8.2.314437188128.1 $S_4\wr C_2$ (as 8T47) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.