Properties

Label 8.4.2396865997.1
Degree 88
Signature [4,2][4, 2]
Discriminant 23968659972396865997
Root discriminant 14.8714.87
Ramified primes 131,167,331131,167,331
Class number 11
Class group trivial
Galois group C2S4C_2 \wr S_4 (as 8T44)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67)
 
Copy content gp:K = bnfinit(y^8 - 2*y^7 - 7*y^6 + 24*y^5 - 2*y^4 - 21*y^3 - 21*y^2 - 22*y + 67, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67)
 

x82x77x6+24x52x421x321x222x+67 x^{8} - 2x^{7} - 7x^{6} + 24x^{5} - 2x^{4} - 21x^{3} - 21x^{2} - 22x + 67 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  88
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [4,2][4, 2]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   23968659972396865997 =1311673312\medspace = 131\cdot 167\cdot 331^{2} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  14.8714.87
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  1311/21671/23311/22690.963953679053131^{1/2}167^{1/2}331^{1/2}\approx 2690.963953679053
Ramified primes:   131131, 167167, 331331 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(21877)\Q(\sqrt{21877})
Aut(K/Q)\Aut(K/\Q):   C2C_2
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, 119a6+719a5719a4519a3519a2+219a+819\frac{1}{19}a^{6}+\frac{7}{19}a^{5}-\frac{7}{19}a^{4}-\frac{5}{19}a^{3}-\frac{5}{19}a^{2}+\frac{2}{19}a+\frac{8}{19}, 18303a71028303a6+18908303a5+19938303a4308303a3+29798303a2+9878303a+9148303\frac{1}{8303}a^{7}-\frac{102}{8303}a^{6}+\frac{1890}{8303}a^{5}+\frac{1993}{8303}a^{4}-\frac{30}{8303}a^{3}+\frac{2979}{8303}a^{2}+\frac{987}{8303}a+\frac{914}{8303} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order 11
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  55
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   8768303a76418303a667088303a5+122898303a4+117398303a310348303a2124478303a340068303\frac{876}{8303}a^{7}-\frac{641}{8303}a^{6}-\frac{6708}{8303}a^{5}+\frac{12289}{8303}a^{4}+\frac{11739}{8303}a^{3}-\frac{1034}{8303}a^{2}-\frac{12447}{8303}a-\frac{34006}{8303}, 13668303a78038303a6105448303a5+174088303a4+219488303a3+56518303a2269978303a677208303\frac{1366}{8303}a^{7}-\frac{803}{8303}a^{6}-\frac{10544}{8303}a^{5}+\frac{17408}{8303}a^{4}+\frac{21948}{8303}a^{3}+\frac{5651}{8303}a^{2}-\frac{26997}{8303}a-\frac{67720}{8303}, 6148303a71378303a645828303a5+57838303a4+95488303a3+138088303a279678303a514788303\frac{614}{8303}a^{7}-\frac{137}{8303}a^{6}-\frac{4582}{8303}a^{5}+\frac{5783}{8303}a^{4}+\frac{9548}{8303}a^{3}+\frac{13808}{8303}a^{2}-\frac{7967}{8303}a-\frac{51478}{8303}, 13668303a78038303a6105448303a5+174088303a4+219488303a3+56518303a2186948303a594178303\frac{1366}{8303}a^{7}-\frac{803}{8303}a^{6}-\frac{10544}{8303}a^{5}+\frac{17408}{8303}a^{4}+\frac{21948}{8303}a^{3}+\frac{5651}{8303}a^{2}-\frac{18694}{8303}a-\frac{59417}{8303}, 338303a7+5678303a614328303a532778303a4+125578303a343888303a2+72258303a214048303\frac{33}{8303}a^{7}+\frac{567}{8303}a^{6}-\frac{1432}{8303}a^{5}-\frac{3277}{8303}a^{4}+\frac{12557}{8303}a^{3}-\frac{4388}{8303}a^{2}+\frac{7225}{8303}a-\frac{21404}{8303} Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  31.916130481 31.916130481
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(24(2π)231.916130481122396865997(0.20589133920 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 31.916130481 \cdot 1}{2\cdot\sqrt{2396865997}}\cr\approx \mathstrut & 0.20589133920 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^7 - 7*x^6 + 24*x^5 - 2*x^4 - 21*x^3 - 21*x^2 - 22*x + 67); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C2S4C_2\wr S_4 (as 8T44):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 384
The 20 conjugacy class representatives for C2S4C_2 \wr S_4
Character table for C2S4C_2 \wr S_4

Intermediate fields

4.2.331.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type 8{\href{/padicField/2.8.0.1}{8} } 42{\href{/padicField/3.4.0.1}{4} }^{2} 32,2{\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} } 42{\href{/padicField/7.4.0.1}{4} }^{2} 42{\href{/padicField/11.4.0.1}{4} }^{2} 4,22{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2} 32,12{\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2} 32,2{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} } 24{\href{/padicField/23.2.0.1}{2} }^{4} 8{\href{/padicField/29.8.0.1}{8} } 32,2{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} } 42{\href{/padicField/37.4.0.1}{4} }^{2} 8{\href{/padicField/41.8.0.1}{8} } 6,12{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2} 4,22{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2} 6,12{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2} 4,14{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}

Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
131131 Copy content Toggle raw display 131.1.2.1a1.1x2+131x^{2} + 131221111C2C_2[ ]2[\ ]_{2}
131.6.1.0a1.1x6+2x4+66x3+4x2+22x+2x^{6} + 2 x^{4} + 66 x^{3} + 4 x^{2} + 22 x + 2116600C6C_6[ ]6[\ ]^{6}
167167 Copy content Toggle raw display 167.1.2.1a1.2x2+835x^{2} + 835221111C2C_2[ ]2[\ ]_{2}
167.6.1.0a1.1x6+2x4+75x3+38x2+2x+5x^{6} + 2 x^{4} + 75 x^{3} + 38 x^{2} + 2 x + 5116600C6C_6[ ]6[\ ]^{6}
331331 Copy content Toggle raw display Deg 22112200C2C_2[ ]2[\ ]^{2}
Deg 22112200C2C_2[ ]2[\ ]^{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)