Normalized defining polynomial
\( x^{8} - 2x^{7} - 7x^{6} + 24x^{5} - 2x^{4} - 21x^{3} - 21x^{2} - 22x + 67 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(2396865997\) \(\medspace = 131\cdot 167\cdot 331^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(14.87\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $131^{1/2}167^{1/2}331^{1/2}\approx 2690.963953679053$ | ||
Ramified primes: | \(131\), \(167\), \(331\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{21877}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{19}a^{6}+\frac{7}{19}a^{5}-\frac{7}{19}a^{4}-\frac{5}{19}a^{3}-\frac{5}{19}a^{2}+\frac{2}{19}a+\frac{8}{19}$, $\frac{1}{8303}a^{7}-\frac{102}{8303}a^{6}+\frac{1890}{8303}a^{5}+\frac{1993}{8303}a^{4}-\frac{30}{8303}a^{3}+\frac{2979}{8303}a^{2}+\frac{987}{8303}a+\frac{914}{8303}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{876}{8303}a^{7}-\frac{641}{8303}a^{6}-\frac{6708}{8303}a^{5}+\frac{12289}{8303}a^{4}+\frac{11739}{8303}a^{3}-\frac{1034}{8303}a^{2}-\frac{12447}{8303}a-\frac{34006}{8303}$, $\frac{1366}{8303}a^{7}-\frac{803}{8303}a^{6}-\frac{10544}{8303}a^{5}+\frac{17408}{8303}a^{4}+\frac{21948}{8303}a^{3}+\frac{5651}{8303}a^{2}-\frac{26997}{8303}a-\frac{67720}{8303}$, $\frac{614}{8303}a^{7}-\frac{137}{8303}a^{6}-\frac{4582}{8303}a^{5}+\frac{5783}{8303}a^{4}+\frac{9548}{8303}a^{3}+\frac{13808}{8303}a^{2}-\frac{7967}{8303}a-\frac{51478}{8303}$, $\frac{1366}{8303}a^{7}-\frac{803}{8303}a^{6}-\frac{10544}{8303}a^{5}+\frac{17408}{8303}a^{4}+\frac{21948}{8303}a^{3}+\frac{5651}{8303}a^{2}-\frac{18694}{8303}a-\frac{59417}{8303}$, $\frac{33}{8303}a^{7}+\frac{567}{8303}a^{6}-\frac{1432}{8303}a^{5}-\frac{3277}{8303}a^{4}+\frac{12557}{8303}a^{3}-\frac{4388}{8303}a^{2}+\frac{7225}{8303}a-\frac{21404}{8303}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 31.916130481 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 31.916130481 \cdot 1}{2\cdot\sqrt{2396865997}}\cr\approx \mathstrut & 0.20589133920 \end{aligned}\]
Galois group
$C_2\wr S_4$ (as 8T44):
A solvable group of order 384 |
The 20 conjugacy class representatives for $C_2 \wr S_4$ |
Character table for $C_2 \wr S_4$ |
Intermediate fields
4.2.331.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(131\) | 131.2.1.2 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
131.6.0.1 | $x^{6} + 2 x^{4} + 66 x^{3} + 4 x^{2} + 22 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(167\) | 167.2.1.1 | $x^{2} + 835$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
167.6.0.1 | $x^{6} + 2 x^{4} + 75 x^{3} + 38 x^{2} + 2 x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(331\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |