Normalized defining polynomial
\( x^{8} - 2x^{7} - 3x^{6} + 15x^{5} - 6x^{4} + 12x^{3} - 33x^{2} - 82x + 79 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(44486028125\) \(\medspace = 5^{5}\cdot 7^{6}\cdot 11^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(21.43\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}7^{3/4}11^{1/2}\approx 47.725158108626026$ | ||
Ramified primes: | \(5\), \(7\), \(11\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{212133}a^{7}-\frac{24620}{212133}a^{6}+\frac{101887}{212133}a^{5}+\frac{2147}{70711}a^{4}-\frac{30482}{212133}a^{3}+\frac{20756}{212133}a^{2}-\frac{13555}{212133}a+\frac{11699}{212133}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{517}{70711}a^{7}-\frac{560}{70711}a^{6}-\frac{4116}{70711}a^{5}+\frac{6580}{70711}a^{4}+\frac{9359}{70711}a^{3}-\frac{17220}{70711}a^{2}-\frac{7546}{70711}a-\frac{32763}{70711}$, $\frac{4064}{212133}a^{7}+\frac{385}{212133}a^{6}-\frac{14848}{212133}a^{5}+\frac{13154}{212133}a^{4}+\frac{25845}{70711}a^{3}+\frac{206294}{212133}a^{2}-\frac{145073}{212133}a-\frac{326611}{212133}$, $\frac{2207}{70711}a^{7}-\frac{20165}{212133}a^{6}+\frac{3629}{70711}a^{5}+\frac{77839}{212133}a^{4}-\frac{153550}{212133}a^{3}+\frac{316847}{212133}a^{2}-\frac{146554}{70711}a+\frac{171956}{212133}$, $\frac{2293}{70711}a^{7}-\frac{8135}{212133}a^{6}-\frac{2253}{70711}a^{5}+\frac{42553}{212133}a^{4}+\frac{43148}{212133}a^{3}+\frac{156437}{212133}a^{2}+\frac{31225}{70711}a-\frac{203830}{212133}$, $\frac{12146}{212133}a^{7}+\frac{2299}{212133}a^{6}-\frac{64420}{212133}a^{5}+\frac{96731}{212133}a^{4}+\frac{73519}{70711}a^{3}+\frac{371216}{212133}a^{2}+\frac{612577}{212133}a-\frac{810877}{212133}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 245.026718105 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 245.026718105 \cdot 1}{2\cdot\sqrt{44486028125}}\cr\approx \mathstrut & 0.366903074326 \end{aligned}\]
Galois group
$C_2\wr C_4$ (as 8T28):
A solvable group of order 64 |
The 13 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$ |
Character table for $(((C_4 \times C_2): C_2):C_2):C_2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.13475.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 8.6.20220921875.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | R | R | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(7\) | 7.8.6.3 | $x^{8} - 154 x^{4} - 1421$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
\(11\) | 11.2.0.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
11.2.0.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.4.2.1 | $x^{4} + 14 x^{3} + 75 x^{2} + 182 x + 620$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |