Normalized defining polynomial
\( x^{8} - 2x^{7} - 3x^{6} - 6x^{5} + 8x^{4} + 26x^{3} - 26x^{2} + 2x + 2 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 1]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-307235186944\) \(\medspace = -\,2^{8}\cdot 7^{6}\cdot 101^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(27.29\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{19/12}7^{3/4}101^{1/2}\approx 129.60299666924007$ | ||
Ramified primes: | \(2\), \(7\), \(101\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{127}a^{7}-\frac{48}{127}a^{6}+\frac{46}{127}a^{5}+\frac{37}{127}a^{4}-\frac{43}{127}a^{3}-\frac{28}{127}a^{2}-\frac{8}{127}a-\frac{11}{127}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{46}{127}a^{7}-\frac{49}{127}a^{6}-\frac{170}{127}a^{5}-\frac{457}{127}a^{4}-\frac{73}{127}a^{3}+\frac{998}{127}a^{2}-\frac{241}{127}a-\frac{125}{127}$, $\frac{199}{127}a^{7}-\frac{281}{127}a^{6}-\frac{752}{127}a^{5}-\frac{1654}{127}a^{4}+\frac{587}{127}a^{3}+\frac{5477}{127}a^{2}-\frac{1846}{127}a-\frac{411}{127}$, $\frac{117}{127}a^{7}-\frac{155}{127}a^{6}-\frac{460}{127}a^{5}-\frac{1005}{127}a^{4}+\frac{303}{127}a^{3}+\frac{3201}{127}a^{2}-\frac{1063}{127}a-\frac{271}{127}$, $\frac{82}{127}a^{7}-\frac{126}{127}a^{6}-\frac{292}{127}a^{5}-\frac{649}{127}a^{4}+\frac{284}{127}a^{3}+\frac{2276}{127}a^{2}-\frac{1037}{127}a-\frac{267}{127}$, $\frac{47}{127}a^{7}-\frac{97}{127}a^{6}-\frac{124}{127}a^{5}-\frac{293}{127}a^{4}+\frac{392}{127}a^{3}+\frac{1097}{127}a^{2}-\frac{1138}{127}a+\frac{245}{127}$, $\frac{199}{127}a^{7}-\frac{281}{127}a^{6}-\frac{752}{127}a^{5}-\frac{1654}{127}a^{4}+\frac{587}{127}a^{3}+\frac{5477}{127}a^{2}-\frac{1846}{127}a-\frac{665}{127}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2009.20325773 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{1}\cdot 2009.20325773 \cdot 1}{2\cdot\sqrt{307235186944}}\cr\approx \mathstrut & 0.728816579864 \end{aligned}\]
Galois group
$C_2\wr S_4$ (as 8T44):
A solvable group of order 384 |
The 20 conjugacy class representatives for $C_2 \wr S_4$ |
Character table for $C_2 \wr S_4$ |
Intermediate fields
4.4.19796.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 8.2.307235186944.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | R | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
\(7\) | 7.8.6.3 | $x^{8} - 154 x^{4} - 1421$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
\(101\) | 101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.4.2.1 | $x^{4} + 16556 x^{3} + 69319047 x^{2} + 6570770114 x + 216554003$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |