Normalized defining polynomial
\( x^{8} - 17x^{6} + 85x^{4} - 102x^{2} - 68 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 1]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-420186801152\) \(\medspace = -\,2^{10}\cdot 17^{7}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(28.37\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{9/4}17^{7/8}\approx 56.749272239690114$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{134}a^{6}-\frac{35}{134}a^{4}+\frac{45}{134}a^{2}+\frac{13}{67}$, $\frac{1}{134}a^{7}-\frac{35}{134}a^{5}+\frac{45}{134}a^{3}+\frac{13}{67}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{3}{67}a^{6}-\frac{38}{67}a^{4}+\frac{135}{67}a^{2}-\frac{123}{67}$, $\frac{5}{134}a^{6}-\frac{41}{134}a^{4}-\frac{43}{134}a^{2}+\frac{132}{67}$, $\frac{11}{134}a^{6}-\frac{117}{134}a^{4}+\frac{227}{134}a^{2}+\frac{76}{67}$, $\frac{11}{134}a^{6}-\frac{117}{134}a^{4}+\frac{227}{134}a^{2}-a+\frac{76}{67}$, $\frac{3}{67}a^{7}-\frac{5}{134}a^{6}-\frac{38}{67}a^{5}+\frac{41}{134}a^{4}+\frac{135}{67}a^{3}-\frac{91}{134}a^{2}-\frac{123}{67}a+\frac{69}{67}$, $\frac{3}{67}a^{7}+\frac{13}{134}a^{6}-\frac{38}{67}a^{5}-\frac{187}{134}a^{4}+\frac{68}{67}a^{3}+\frac{585}{134}a^{2}+\frac{279}{67}a+\frac{169}{67}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 642.665212229 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{1}\cdot 642.665212229 \cdot 2}{2\cdot\sqrt{420186801152}}\cr\approx \mathstrut & 0.398679065107 \end{aligned}\]
Galois group
$C_2\wr C_4$ (as 8T27):
A solvable group of order 64 |
The 13 conjugacy class representatives for $((C_8 : C_2):C_2):C_2$ |
Character table for $((C_8 : C_2):C_2):C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.4913.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.6.1 | $x^{4} + 2 x^{3} + 31 x^{2} + 30 x + 183$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
2.4.4.3 | $x^{4} + 2 x^{3} + 4 x^{2} + 12 x + 12$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
\(17\) | 17.8.7.1 | $x^{8} + 68$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |