Normalized defining polynomial
\( x^{9} - 19x^{5} - 76x^{4} - 38x^{3} + 228x^{2} + 456x + 304 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1113034787454976\) \(\medspace = 2^{16}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(46.97\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3}19^{8/9}\approx 109.58720601631192$ | ||
Ramified primes: | \(2\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{7}+\frac{1}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{6272}a^{8}-\frac{173}{3136}a^{7}+\frac{137}{1568}a^{6}-\frac{181}{784}a^{5}-\frac{771}{6272}a^{4}-\frac{1503}{3136}a^{3}-\frac{557}{3136}a^{2}+\frac{55}{112}a+\frac{127}{784}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{5}{784}a^{8}+\frac{17}{392}a^{7}-\frac{1}{196}a^{6}-\frac{23}{98}a^{5}-\frac{327}{784}a^{4}+\frac{31}{392}a^{3}+\frac{351}{392}a^{2}+\frac{8}{7}a+\frac{47}{98}$, $\frac{43}{3136}a^{8}+\frac{9}{1568}a^{7}+\frac{11}{784}a^{6}+\frac{57}{392}a^{5}-\frac{225}{3136}a^{4}-\frac{733}{1568}a^{3}+\frac{1137}{1568}a^{2}+\frac{153}{56}a+\frac{757}{392}$, $\frac{8383}{6272}a^{8}-\frac{2211}{3136}a^{7}-\frac{2833}{1568}a^{6}+\frac{4225}{784}a^{5}-\frac{199133}{6272}a^{4}-\frac{279873}{3136}a^{3}+\frac{177357}{3136}a^{2}+\frac{36585}{112}a+\frac{206161}{784}$, $\frac{7067}{6272}a^{8}+\frac{1233}{3136}a^{7}+\frac{6603}{1568}a^{6}+\frac{4085}{784}a^{5}-\frac{18673}{6272}a^{4}-\frac{191365}{3136}a^{3}-\frac{215455}{3136}a^{2}-\frac{1635}{112}a+\frac{53141}{784}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 11784.0495373 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 11784.0495373 \cdot 9}{2\cdot\sqrt{1113034787454976}}\cr\approx \mathstrut & 4.95452670097 \end{aligned}\] (assuming GRH)
Galois group
$C_3^3:S_4$ (as 9T30):
A solvable group of order 648 |
The 14 conjugacy class representatives for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
Character table for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
Intermediate fields
3.1.2888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.4.11.6 | $x^{4} + 18$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |