Properties

Label 9.1.507799783342080.2
Degree 99
Signature [1,4][1, 4]
Discriminant 5.078×10145.078\times 10^{14}
Root discriminant 43.0543.05
Ramified primes 2,3,52,3,5
Class number 11
Class group trivial
Galois group S9S_9 (as 9T34)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 + 36*x - 32)
 
gp: K = bnfinit(y^9 + 36*y - 32, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 + 36*x - 32);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^9 + 36*x - 32)
 

x9+36x32 x^{9} + 36x - 32 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  99
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [1,4][1, 4]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   507799783342080507799783342080 =2183185\medspace = 2^{18}\cdot 3^{18}\cdot 5 Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  43.0543.05
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  29/43121/5451/2124.711793846695872^{9/4}3^{121/54}5^{1/2}\approx 124.71179384669587
Ramified primes:   22, 33, 55 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(5)\Q(\sqrt{5})
Aut(K/Q)\Aut(K/\Q):   C1C_1
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, 12a4\frac{1}{2}a^{4}, 14a512a312a\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a, 14a612a2\frac{1}{4}a^{6}-\frac{1}{2}a^{2}, 18a714a312a\frac{1}{8}a^{7}-\frac{1}{4}a^{3}-\frac{1}{2}a, 18a814a412a2\frac{1}{8}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 
Narrow class group:  Trivial group, which has order 11

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  44
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   18a714a5+14a3+a1\frac{1}{8}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}+a-1, 98a838a72a6+314a5734a4+1374a31072a2+71a37\frac{9}{8}a^{8}-\frac{3}{8}a^{7}-2a^{6}+\frac{31}{4}a^{5}-\frac{73}{4}a^{4}+\frac{137}{4}a^{3}-\frac{107}{2}a^{2}+71a-37, 18a8+32a7+12a5+34a4+72a213a+37\frac{1}{8}a^{8}+\frac{3}{2}a^{7}+\frac{1}{2}a^{5}+\frac{3}{4}a^{4}+\frac{7}{2}a^{2}-13a+37, 1178a8+12a71392a6+52a5+3994a4285a3+2452a2+573a593\frac{117}{8}a^{8}+12a^{7}-\frac{139}{2}a^{6}+52a^{5}+\frac{399}{4}a^{4}-285a^{3}+\frac{245}{2}a^{2}+573a-593 Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  27868.5090456 27868.5090456
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(21(2π)427868.509045612507799783342080(1.92746700574 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 27868.5090456 \cdot 1}{2\cdot\sqrt{507799783342080}}\cr\approx \mathstrut & 1.92746700574 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 + 36*x - 32)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 + 36*x - 32, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 + 36*x - 32);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 + 36*x - 32);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S9S_9 (as 9T34):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 362880
The 30 conjugacy class representatives for S9S_9
Character table for S9S_9

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q\Q.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R R R 8,1{\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.1.0.1}{1} } 5,3,1{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} } 7,2{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.2.0.1}{2} } 7,2{\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.2.0.1}{2} } 6,2,1{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} } 6,13{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3} 9{\href{/padicField/29.9.0.1}{9} } 6,2,1{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} } 32,2,1{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} } 9{\href{/padicField/41.9.0.1}{9} } 8,1{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} } 4,22,1{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} } 8,1{\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} } 6,2,1{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display Q2\Q_{2}x+1x + 1111100Trivial[ ][\ ]
2.1.8.18b1.5x8+4x7+2x6+4x5+4x3+2x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 288111818C4C2C_4\wr C_2[2,2,3]4[2, 2, 3]^{4}
33 Copy content Toggle raw display 3.1.9.18b2.4x9+3x3+9x2+18x+3x^{9} + 3 x^{3} + 9 x^{2} + 18 x + 399111818C32:D6C_3^2 : D_{6} [32,2,52]22[\frac{3}{2}, 2, \frac{5}{2}]_{2}^{2}
55 Copy content Toggle raw display 5.1.2.1a1.1x2+5x^{2} + 5221111C2C_2[ ]2[\ ]_{2}
5.7.1.0a1.1x7+3x+3x^{7} + 3 x + 3117700C7C_7[ ]7[\ ]^{7}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)