Normalized defining polynomial
\( x^{9} + 36x - 32 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(507799783342080\) \(\medspace = 2^{18}\cdot 3^{18}\cdot 5\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(43.05\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{9/4}3^{121/54}5^{1/2}\approx 124.71179384669587$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{7}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{8}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}+a-1$, $\frac{9}{8}a^{8}-\frac{3}{8}a^{7}-2a^{6}+\frac{31}{4}a^{5}-\frac{73}{4}a^{4}+\frac{137}{4}a^{3}-\frac{107}{2}a^{2}+71a-37$, $\frac{1}{8}a^{8}+\frac{3}{2}a^{7}+\frac{1}{2}a^{5}+\frac{3}{4}a^{4}+\frac{7}{2}a^{2}-13a+37$, $\frac{117}{8}a^{8}+12a^{7}-\frac{139}{2}a^{6}+52a^{5}+\frac{399}{4}a^{4}-285a^{3}+\frac{245}{2}a^{2}+573a-593$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 27868.5090456 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 27868.5090456 \cdot 1}{2\cdot\sqrt{507799783342080}}\cr\approx \mathstrut & 1.92746700574 \end{aligned}\]
Galois group
A non-solvable group of order 362880 |
The 30 conjugacy class representatives for $S_9$ |
Character table for $S_9$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 18 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.9.0.1}{9} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.8.18.77 | $x^{8} + 6 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $C_4\wr C_2$ | $[2, 2, 3]^{4}$ | |
\(3\) | 3.9.18.56 | $x^{9} + 3 x^{3} + 9 x^{2} + 18 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : D_{6} $ | $[3/2, 2, 5/2]_{2}^{2}$ |
\(5\) | 5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.7.0.1 | $x^{7} + 3 x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |