Normalized defining polynomial
\( x^{9} + 486x - 1296 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(56158593639367311360\) \(\medspace = 2^{30}\cdot 3^{21}\cdot 5\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(156.45\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{137/32}3^{133/54}5^{1/2}\approx 650.7312305323685$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{15}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{3}a^{4}$, $\frac{1}{9}a^{5}$, $\frac{1}{9}a^{6}$, $\frac{1}{27}a^{7}$, $\frac{1}{378}a^{8}-\frac{2}{189}a^{7}-\frac{2}{63}a^{6}+\frac{1}{63}a^{5}+\frac{1}{21}a^{4}+\frac{1}{7}a^{3}+\frac{3}{7}a^{2}+\frac{2}{7}a+\frac{1}{7}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{3067}{189}a^{8}+\frac{145}{21}a^{7}-\frac{6521}{63}a^{6}+\frac{11419}{63}a^{5}+\frac{1263}{7}a^{4}-\frac{28582}{21}a^{3}+\frac{13040}{7}a^{2}+\frac{24721}{7}a-\frac{68017}{7}$, $\frac{731572}{9}a^{8}+\frac{331264}{9}a^{7}-\frac{5596384}{9}a^{6}+\frac{22935920}{9}a^{5}-7786976a^{4}+\frac{60399080}{3}a^{3}-45296225a^{2}+87155215a-91187647$, $\frac{74467640890}{189}a^{8}-\frac{63141053977}{63}a^{7}+\frac{15532133031}{7}a^{6}-\frac{263286840812}{63}a^{5}+\frac{126046262893}{21}a^{4}-\frac{21142962682}{7}a^{3}-\frac{143387979517}{7}a^{2}+\frac{754872510668}{7}a-\frac{1196333843609}{7}$, $\frac{21505669344580}{189}a^{8}+\frac{13791164409842}{63}a^{7}+\frac{2948001184686}{7}a^{6}+\frac{51043375723027}{63}a^{5}+\frac{32733116965789}{21}a^{4}+\frac{20991106478316}{7}a^{3}+\frac{40383556269062}{7}a^{2}+\frac{77691549805118}{7}a+\frac{536568255249847}{7}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7578466.00751 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 7578466.00751 \cdot 1}{2\cdot\sqrt{56158593639367311360}}\cr\approx \mathstrut & 1.57613229819 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 362880 |
The 30 conjugacy class representatives for $S_9$ |
Character table for $S_9$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 18 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.9.0.1}{9} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.8.30.51 | $x^{8} + 8 x^{7} + 16 x^{6} + 28 x^{4} + 8 x^{2} + 26$ | $8$ | $1$ | $30$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4, 19/4]$ | |
\(3\) | 3.9.21.42 | $x^{9} + 9 x^{4} + 21$ | $9$ | $1$ | $21$ | $(C_3^2:C_3):C_2$ | $[3/2, 5/2, 8/3]_{2}$ |
\(5\) | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.7.0.1 | $x^{7} + 3 x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |