Normalized defining polynomial
\( x^{9} - 3x^{8} + 8x^{6} - 12x^{5} + 12x^{4} - 24x^{2} + 30x - 10 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-6604518850560\) \(\medspace = -\,2^{26}\cdot 3^{9}\cdot 5\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(26.57\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{169/48}3^{7/6}5^{1/2}\approx 92.47043679495332$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-15}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{33}a^{8}-\frac{10}{33}a^{7}+\frac{4}{33}a^{6}+\frac{13}{33}a^{5}-\frac{4}{33}a^{4}+\frac{7}{33}a^{3}-\frac{16}{33}a^{2}-\frac{1}{3}a+\frac{8}{33}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{31}{33}a^{8}-\frac{79}{33}a^{7}-\frac{41}{33}a^{6}+\frac{238}{33}a^{5}-\frac{256}{33}a^{4}+\frac{250}{33}a^{3}+\frac{131}{33}a^{2}-\frac{64}{3}a+\frac{611}{33}$, $\frac{16}{33}a^{8}+\frac{5}{33}a^{7}-\frac{68}{33}a^{6}-\frac{23}{33}a^{5}+\frac{2}{33}a^{4}+\frac{13}{33}a^{3}+\frac{239}{33}a^{2}+\frac{8}{3}a-\frac{103}{33}$, $\frac{26}{33}a^{8}-\frac{62}{33}a^{7}-\frac{28}{33}a^{6}+\frac{173}{33}a^{5}-\frac{236}{33}a^{4}+\frac{215}{33}a^{3}+\frac{145}{33}a^{2}-\frac{47}{3}a+\frac{439}{33}$, $\frac{4}{11}a^{8}-\frac{7}{11}a^{7}-\frac{17}{11}a^{6}+\frac{41}{11}a^{5}-\frac{16}{11}a^{4}-\frac{16}{11}a^{3}+\frac{68}{11}a^{2}-11a+\frac{87}{11}$, $\frac{3}{11}a^{8}-\frac{30}{11}a^{7}+\frac{78}{11}a^{6}-\frac{49}{11}a^{5}-\frac{78}{11}a^{4}+\frac{241}{11}a^{3}-\frac{444}{11}a^{2}+39a-\frac{163}{11}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5209.25032274 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 5209.25032274 \cdot 1}{2\cdot\sqrt{6604518850560}}\cr\approx \mathstrut & 2.01119523627 \end{aligned}\]
Galois group
A non-solvable group of order 362880 |
The 30 conjugacy class representatives for $S_9$ |
Character table for $S_9$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 18 sibling: | data not computed |
Degree 36 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.9.0.1}{9} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.9.0.1}{9} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.9.0.1}{9} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.8.26.50 | $x^{8} + 8 x^{3} + 10$ | $8$ | $1$ | $26$ | $V_4^2:(S_3\times C_2)$ | $[8/3, 8/3, 3, 23/6, 23/6]_{3}^{2}$ | |
\(3\) | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
3.6.6.3 | $x^{6} + 18 x^{5} + 120 x^{4} + 386 x^{3} + 723 x^{2} + 732 x + 305$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
\(5\) | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.7.0.1 | $x^{7} + 3 x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |