Name: | $C_2^2$ |
Order: | $4$ |
Abelian: | yes |
Generators: | $\begin{bmatrix}1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0& 0 & 0 \\0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & -1 & 0 \\0 & 0 & 0 & 0 & 0 & -1 \\\end{bmatrix}, \begin{bmatrix}\zeta_{6}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{6}^{1} & 0 & 0 & 0 & 0 \\0 & 0 & \zeta_{3}^{2} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{6}^{5} & 0 & 0 \\0 & 0 & 0 & 0 & \zeta_{6}^{5} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{3}^{1} \\\end{bmatrix}$ |
Maximal subgroups: | $A(1,2)$${}^{\times 3}$ |
Minimal supergroups: | $A(2,4)$, $J(A(2,2))$, $J_s(A(2,2))$, $B(3,2)$, $A(6,2)$, $B(1,4)_2$${}^{\times 2}$, $C(2,2)$, $A(2,6)$ |
$x$ |
$\mathrm{E}[x^{0}]$ |
$\mathrm{E}[x^{1}]$ |
$\mathrm{E}[x^{2}]$ |
$\mathrm{E}[x^{3}]$ |
$\mathrm{E}[x^{4}]$ |
$\mathrm{E}[x^{5}]$ |
$\mathrm{E}[x^{6}]$ |
$\mathrm{E}[x^{7}]$ |
$\mathrm{E}[x^{8}]$ |
$\mathrm{E}[x^{9}]$ |
$\mathrm{E}[x^{10}]$ |
$\mathrm{E}[x^{11}]$ |
$\mathrm{E}[x^{12}]$ |
$a_1$ |
$1$ |
$0$ |
$6$ |
$0$ |
$126$ |
$0$ |
$3660$ |
$0$ |
$114870$ |
$0$ |
$3720276$ |
$0$ |
$122763564$ |
$a_2$ |
$1$ |
$3$ |
$27$ |
$309$ |
$3963$ |
$53073$ |
$727101$ |
$10105875$ |
$141907059$ |
$2008185033$ |
$28592728257$ |
$409122034335$ |
$5877905052117$ |
$a_3$ |
$1$ |
$0$ |
$44$ |
$0$ |
$11820$ |
$0$ |
$3864140$ |
$0$ |
$1340497564$ |
$0$ |
$479997013104$ |
$0$ |
$175364875326036$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon$ |
$3$ |
$6$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon$ |
$27$ |
$12$ |
$54$ |
$126$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon$ |
$44$ |
$309$ |
$168$ |
$690$ |
$372$ |
$1578$ |
$3660$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon$ |
$516$ |
$3963$ |
$2160$ |
$1194$ |
$9114$ |
$4986$ |
$21144$ |
$11520$ |
$49200$ |
$114870$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon$ |
$6816$ |
$53073$ |
$3708$ |
$28920$ |
$15774$ |
$123570$ |
$67308$ |
$36732$ |
$288684$ |
$157116$ |
$675792$ |
$367332$ |
$1584450$ |
$3720276$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon$ |
$11820$ |
$92112$ |
$727101$ |
$50208$ |
$395244$ |
$215022$ |
$1703682$ |
$116976$ |
$925470$ |
$502980$ |
$3998934$ |
$2170584$ |
$1178940$ |
$9398628$ |
$$ |
$5097960$ |
$22113882$ |
$11986632$ |
$52081092$ |
$122763564$ |
$\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&2&0&3&0&4&12&0&10&0&15&0&0&40\\0&6&0&6&0&36&0&0&66&0&30&0&90&162&0\\2&0&22&0&24&0&86&102&0&80&0&198&0&0&500\\0&6&0&26&0&76&0&0&126&0&50&0&240&332&0\\3&0&24&0&45&0&108&150&0&144&0&285&0&0&720\\0&36&0&76&0&320&0&0&576&0&256&0&936&1480&0\\4&0&86&0&108&0&382&432&0&364&0&900&0&0&2272\\12&0&102&0&150&0&432&582&0&516&0&1110&0&0&2844\\0&66&0&126&0&576&0&0&1062&0&480&0&1686&2736&0\\10&0&80&0&144&0&364&516&0&492&0&984&0&0&2528\\0&30&0&50&0&256&0&0&480&0&224&0&744&1232&0\\15&0&198&0&285&0&900&1110&0&984&0&2259&0&0&5760\\0&90&0&240&0&936&0&0&1686&0&744&0&2928&4464&0\\0&162&0&332&0&1480&0&0&2736&0&1232&0&4464&7154&0\\40&0&500&0&720&0&2272&2844&0&2528&0&5760&0&0&14784\end{bmatrix}$
$\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&6&22&26&45&320&382&582&1062&492&224&2259&2928&7154&14784&7782&7911&19760&17520&5350\end{bmatrix}$
$\mathrm{Pr}[a_i=n]=0$ for $i=1,2,3$ and $n\in\mathbb{Z}$.