Properties

Label 1.6.N.4.2a
  
Name A(2,2)A(2,2)
Weight 11
Degree 66
Real dimension 11
Components 44
Contained in USp(6)\mathrm{USp}(6)
Identity component U(1)3\mathrm{U}(1)_3
Component group C22C_2^2

Downloads

Learn more

Invariants

Weight:11
Degree:66
R\mathbb{R}-dimension:11
Components:44
Contained in:USp(6)\mathrm{USp}(6)
Rational:yes

Identity component

Name:U(1)3\mathrm{U}(1)_3
R\mathbb{R}-dimension:11
Description:{[αI30,0αˉI3]:ααˉ=1, αC}\left\{\begin{bmatrix}\alpha I_3&0,\\ 0&\bar \alpha I_3\end{bmatrix}: \alpha\bar\alpha=1,\ \alpha\in\mathbb{C}\right\} Symplectic form:[0I3I30]\begin{bmatrix} 0 & I_3\\ -I_3 & 0\end{bmatrix}
Hodge circle:udiag(u,u,u,uˉ,uˉ,uˉ)u\mapsto \mathrm{diag}(u,u, u, \bar u, \bar u, \bar u)

Component group

Name:C22C_2^2
Order:44
Abelian:yes
Generators:[100000010000001000000100000010000001],[ζ61000000ζ61000000ζ32000000ζ65000000ζ65000000ζ31]\begin{bmatrix}1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0& 0 & 0 \\0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & -1 & 0 \\0 & 0 & 0 & 0 & 0 & -1 \\\end{bmatrix}, \begin{bmatrix}\zeta_{6}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{6}^{1} & 0 & 0 & 0 & 0 \\0 & 0 & \zeta_{3}^{2} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{6}^{5} & 0 & 0 \\0 & 0 & 0 & 0 & \zeta_{6}^{5} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{3}^{1} \\\end{bmatrix}

Subgroups and supergroups

Maximal subgroups:A(1,2)A(1,2)×3{}^{\times 3}
Minimal supergroups:A(2,4)A(2,4), J(A(2,2))J(A(2,2)), Js(A(2,2))J_s(A(2,2)), B(3,2)B(3,2), A(6,2)A(6,2), B(1,4)2B(1,4)_2×2{}^{\times 2}, C(2,2)C(2,2), A(2,6)A(2,6)

Moment sequences

xx E[x0]\mathrm{E}[x^{0}] E[x1]\mathrm{E}[x^{1}] E[x2]\mathrm{E}[x^{2}] E[x3]\mathrm{E}[x^{3}] E[x4]\mathrm{E}[x^{4}] E[x5]\mathrm{E}[x^{5}] E[x6]\mathrm{E}[x^{6}] E[x7]\mathrm{E}[x^{7}] E[x8]\mathrm{E}[x^{8}] E[x9]\mathrm{E}[x^{9}] E[x10]\mathrm{E}[x^{10}] E[x11]\mathrm{E}[x^{11}] E[x12]\mathrm{E}[x^{12}]
a1a_1 11 00 66 00 126126 00 36603660 00 114870114870 00 37202763720276 00 122763564122763564
a2a_2 11 33 2727 309309 39633963 5307353073 727101727101 1010587510105875 141907059141907059 20081850332008185033 2859272825728592728257 409122034335409122034335 58779050521175877905052117
a3a_3 11 00 4444 00 1182011820 00 38641403864140 00 13404975641340497564 00 479997013104479997013104 00 175364875326036175364875326036

Moment simplex

(E[a1e1a2e2a3e3]:iei=2) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon 33 66
(E[a1e1a2e2a3e3]:iei=4) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon 2727 1212 5454 126126
(E[a1e1a2e2a3e3]:iei=6) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon 4444 309309 168168 690690 372372 15781578 36603660
(E[a1e1a2e2a3e3]:iei=8) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon 516516 39633963 21602160 11941194 91149114 49864986 2114421144 1152011520 4920049200 114870114870
(E[a1e1a2e2a3e3]:iei=10) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon 68166816 5307353073 37083708 2892028920 1577415774 123570123570 6730867308 3673236732 288684288684 157116157116 675792675792 367332367332 15844501584450 37202763720276
(E[a1e1a2e2a3e3]:iei=12) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon 1182011820 9211292112 727101727101 5020850208 395244395244 215022215022 17036821703682 116976116976 925470925470 502980502980 39989343998934 21705842170584 11789401178940 93986289398628
50979605097960 2211388222113882 1198663211986632 5208109252081092 122763564122763564

Moment matrix

E[χiχj]=[10203041201001500400606036006603009016202022024086102080019800500060260760012605002403320302404501081500144028500720036076032000576025609361480040860108038243203640900002272120102015004325820516011100028440660126057600106204800168627360100800144036451604920984002528030050025600480022407441232015019802850900111009840225900576009002400936001686074402928446400162033201480002736012320446471540400500072002272284402528057600014784]\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&2&0&3&0&4&12&0&10&0&15&0&0&40\\0&6&0&6&0&36&0&0&66&0&30&0&90&162&0\\2&0&22&0&24&0&86&102&0&80&0&198&0&0&500\\0&6&0&26&0&76&0&0&126&0&50&0&240&332&0\\3&0&24&0&45&0&108&150&0&144&0&285&0&0&720\\0&36&0&76&0&320&0&0&576&0&256&0&936&1480&0\\4&0&86&0&108&0&382&432&0&364&0&900&0&0&2272\\12&0&102&0&150&0&432&582&0&516&0&1110&0&0&2844\\0&66&0&126&0&576&0&0&1062&0&480&0&1686&2736&0\\10&0&80&0&144&0&364&516&0&492&0&984&0&0&2528\\0&30&0&50&0&256&0&0&480&0&224&0&744&1232&0\\15&0&198&0&285&0&900&1110&0&984&0&2259&0&0&5760\\0&90&0&240&0&936&0&0&1686&0&744&0&2928&4464&0\\0&162&0&332&0&1480&0&0&2736&0&1232&0&4464&7154&0\\40&0&500&0&720&0&2272&2844&0&2528&0&5760&0&0&14784\end{bmatrix}

   E[χi2]=[162226453203825821062492224225929287154147847782791119760175205350]\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&6&22&26&45&320&382&582&1062&492&224&2259&2928&7154&14784&7782&7911&19760&17520&5350\end{bmatrix}

Event probabilities

Pr[ai=n]=0\mathrm{Pr}[a_i=n]=0 for i=1,2,3i=1,2,3 and nZn\in\mathbb{Z}.