Properties

Label 1.6.N.8.3a
  
Name Js(A(2,2))J_s(A(2,2))
Weight 11
Degree 66
Real dimension 11
Components 88
Contained in USp(6)\mathrm{USp}(6)
Identity component U(1)3\mathrm{U}(1)_3
Component group D4D_4

Downloads

Learn more

Invariants

Weight:11
Degree:66
R\mathbb{R}-dimension:11
Components:88
Contained in:USp(6)\mathrm{USp}(6)
Rational:yes

Identity component

Name:U(1)3\mathrm{U}(1)_3
R\mathbb{R}-dimension:11
Description:{[αI30,0αˉI3]:ααˉ=1, αC}\left\{\begin{bmatrix}\alpha I_3&0,\\ 0&\bar \alpha I_3\end{bmatrix}: \alpha\bar\alpha=1,\ \alpha\in\mathbb{C}\right\} Symplectic form:[0I3I30]\begin{bmatrix} 0 & I_3\\ -I_3 & 0\end{bmatrix}
Hodge circle:udiag(u,u,u,uˉ,uˉ,uˉ)u\mapsto \mathrm{diag}(u,u, u, \bar u, \bar u, \bar u)

Component group

Name:D4D_4
Order:88
Abelian:no
Generators:[100000010000001000000100000010000001],[ζ61000000ζ61000000ζ32000000ζ65000000ζ65000000ζ31],[000100000001000010100000001000010000]\begin{bmatrix}1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0& 0 & 0 \\0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & -1 & 0 \\0 & 0 & 0 & 0 & 0 & -1 \\\end{bmatrix}, \begin{bmatrix}\zeta_{6}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{6}^{1} & 0 & 0 & 0 & 0 \\0 & 0 & \zeta_{3}^{2} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{6}^{5} & 0 & 0 \\0 & 0 & 0 & 0 & \zeta_{6}^{5} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{3}^{1} \\\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 & -1 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & -1 \\0 & 0 & 0 & 0 & -1 & 0 \\1 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 & 0 & 0 \\\end{bmatrix}

Subgroups and supergroups

Maximal subgroups:A(2,2)A(2,2), Jn(A(1,2))J_n(A(1,2)), J(A(1,2))J(A(1,2))
Minimal supergroups:Js(B(3,2))J_s(B(3,2)), Js(A(2,4))J_s(A(2,4))×2{}^{\times 2}, Js(A(2,6))J_s(A(2,6)), J(B(1,4)2)J(B(1,4)_2)×2{}^{\times 2}, Js(A(6,2))J_s(A(6,2)), Js(C(2,2))J_s(C(2,2))

Moment sequences

xx E[x0]\mathrm{E}[x^{0}] E[x1]\mathrm{E}[x^{1}] E[x2]\mathrm{E}[x^{2}] E[x3]\mathrm{E}[x^{3}] E[x4]\mathrm{E}[x^{4}] E[x5]\mathrm{E}[x^{5}] E[x6]\mathrm{E}[x^{6}] E[x7]\mathrm{E}[x^{7}] E[x8]\mathrm{E}[x^{8}] E[x9]\mathrm{E}[x^{9}] E[x10]\mathrm{E}[x^{10}] E[x11]\mathrm{E}[x^{11}] E[x12]\mathrm{E}[x^{12}]
a1a_1 11 00 33 00 6363 00 18301830 00 5743557435 00 18601381860138 00 6138178261381782
a2a_2 11 22 1616 161161 20022002 2659726597 363733363733 50534845053484 7095517070955170 10040974371004097437 1429637889114296378891 204561061454204561061454 29389526589192938952658919
a3a_3 11 00 2222 00 59105910 00 19320701932070 00 670248782670248782 00 239998506552239998506552 00 8768243766301887682437663018

Moment simplex

(E[a1e1a2e2a3e3]:iei=2) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon 22 33
(E[a1e1a2e2a3e3]:iei=4) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon 1616 66 2727 6363
(E[a1e1a2e2a3e3]:iei=6) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon 2222 161161 8484 345345 186186 789789 18301830
(E[a1e1a2e2a3e3]:iei=8) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon 258258 20022002 10801080 597597 45574557 24932493 1057210572 57605760 2460024600 5743557435
(E[a1e1a2e2a3e3]:iei=10) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon 34083408 2659726597 18541854 1446014460 78877887 6178561785 3365433654 1836618366 144342144342 7855878558 337896337896 183666183666 792225792225 18601381860138
(E[a1e1a2e2a3e3]:iei=12) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon 59105910 4605646056 363733363733 2510425104 197622197622 107511107511 851841851841 5848858488 462735462735 251490251490 19994671999467 10852921085292 589470589470 46993144699314
25489802548980 1105694111056941 59933165993316 2604054626040546 6138178261381782

Moment matrix

E[χiχj]=[10101028030600200303018003301504581010130100415304009900250030130380063025012016601010025056710740144003600180380160002880128046874002041056019321401820450001136805307102143010250054900142203306302880053102400843136803040074018225002540498001264015025012800240011203726160609901440450549049801134002880045012004680084303720146422320081016607400013680616022323577020025003600113614220126402880007392]\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&1&0&1&0&2&8&0&3&0&6&0&0&20\\0&3&0&3&0&18&0&0&33&0&15&0&45&81&0\\1&0&13&0&10&0&41&53&0&40&0&99&0&0&250\\0&3&0&13&0&38&0&0&63&0&25&0&120&166&0\\1&0&10&0&25&0&56&71&0&74&0&144&0&0&360\\0&18&0&38&0&160&0&0&288&0&128&0&468&740&0\\2&0&41&0&56&0&193&214&0&182&0&450&0&0&1136\\8&0&53&0&71&0&214&301&0&250&0&549&0&0&1422\\0&33&0&63&0&288&0&0&531&0&240&0&843&1368&0\\3&0&40&0&74&0&182&250&0&254&0&498&0&0&1264\\0&15&0&25&0&128&0&0&240&0&112&0&372&616&0\\6&0&99&0&144&0&450&549&0&498&0&1134&0&0&2880\\0&45&0&120&0&468&0&0&843&0&372&0&1464&2232&0\\0&81&0&166&0&740&0&0&1368&0&616&0&2232&3577&0\\20&0&250&0&360&0&1136&1422&0&1264&0&2880&0&0&7392\end{bmatrix}

   E[χi2]=[13131325160193301531254112113414643577739238913978988087782675]\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&3&13&13&25&160&193&301&531&254&112&1134&1464&3577&7392&3891&3978&9880&8778&2675\end{bmatrix}

Event probabilities

-a2Za_2\in\mathbb{Z}a2=1a_2=-1a2=0a_2=0a2=1a_2=1a2=2a_2=2a2=3a_2=3
-111/21/21/41/40000001/41/4
a1=0a_1=01/21/21/21/21/41/40000001/41/4
a3=0a_3=01/21/21/21/21/41/40000001/41/4
a1=a3=0a_1=a_3=01/21/21/21/21/41/40000001/41/4