Properties

Label 1.6.N.4.2b
  
Name \(J(A(1,2))\)
Weight $1$
Degree $6$
Real dimension $1$
Components $4$
Contained in \(\mathrm{USp}(6)\)
Identity component \(\mathrm{U}(1)_3\)
Component group \(C_2^2\)

Downloads

Learn more

Invariants

Weight:$1$
Degree:$6$
$\mathbb{R}$-dimension:$1$
Components:$4$
Contained in:$\mathrm{USp}(6)$
Rational:yes

Identity component

Name:$\mathrm{U}(1)_3$
$\mathbb{R}$-dimension:$1$
Description:$\left\{\begin{bmatrix}\alpha I_3&0,\\ 0&\bar \alpha I_3\end{bmatrix}: \alpha\bar\alpha=1,\ \alpha\in\mathbb{C}\right\}$ Symplectic form:$\begin{bmatrix} 0 & I_3\\ -I_3 & 0\end{bmatrix}$
Hodge circle:$u\mapsto \mathrm{diag}(u,u, u, \bar u, \bar u, \bar u)$

Component group

Name:$C_2^2$
Order:$4$
Abelian:yes
Generators:$\begin{bmatrix}\zeta_{3}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{6}^{5} & 0 & 0 &0 & 0 \\0 & 0 & \zeta_{6}^{5} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{3}^{2} & 0 & 0 \\0 & 0 & 0 & 0 & \zeta_{6}^{1} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{6}^{1} \\\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\-1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 \\\end{bmatrix}$

Subgroups and supergroups

Maximal subgroups:$J(A(1,1))$${}^{\times 2}$, $A(1,2)$
Minimal supergroups:$J(A(1,4)_1)$${}^{\times 2}$, $J_s(A(1,4)_2)$, $J(A(1,6)_1)$, $J(A(3,2))$, $J(A(1,4)_2)$${}^{\times 2}$, $J(A(1,6)_2)$, $J(B(3,1))$, $J_s(A(2,2))$, $J(A(2,2))$${}^{\times 6}$, $J_s(A(3,2))$

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $5$ $0$ $123$ $0$ $3650$ $0$ $114835$ $0$ $3720150$ $0$ $122763102$
$a_2$ $1$ $4$ $30$ $319$ $3994$ $53169$ $727395$ $10106772$ $141909786$ $2008193305$ $28592753305$ $409122110082$ $5877905280943$
$a_3$ $1$ $0$ $42$ $0$ $11798$ $0$ $3863850$ $0$ $1340493518$ $0$ $479996954952$ $0$ $175364874474218$

Moment simplex

$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon$ $4$ $5$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon$ $30$ $13$ $54$ $123$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon$ $42$ $319$ $167$ $689$ $376$ $1579$ $3650$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon$ $517$ $3994$ $2160$ $1187$ $9113$ $4983$ $21142$ $11535$ $49205$ $114835$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon$ $6814$ $53169$ $3720$ $28918$ $15779$ $123567$ $67310$ $36706$ $288684$ $157105$ $675786$ $367388$ $1584471$ $3720150$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon$ $11798$ $92111$ $727395$ $50198$ $395241$ $215017$ $1703676$ $117022$ $925467$ $503000$ $3998931$ $2170593$ $1178842$ $9398631$
$$ $5097918$ $22113861$ $11986842$ $52081176$ $122763102$

Moment matrix

$\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&3&0&1&0&5&13&0&6&0&14&0&0&40\\0&5&0&8&0&36&0&0&64&0&28&0&96&159&0\\3&0&23&0&23&0&82&109&0&81&0&195&0&0&500\\0&8&0&21&0&76&0&0&132&0&56&0&224&339&0\\1&0&23&0&45&0&117&137&0&138&0&290&0&0&720\\0&36&0&76&0&320&0&0&576&0&256&0&936&1480&0\\5&0&82&0&117&0&371&438&0&388&0&900&0&0&2272\\13&0&109&0&137&0&438&587&0&487&0&1105&0&0&2844\\0&64&0&132&0&576&0&0&1053&0&472&0&1708&2727&0\\6&0&81&0&138&0&388&487&0&462&0&994&0&0&2528\\0&28&0&56&0&256&0&0&472&0&216&0&764&1224&0\\14&0&195&0&290&0&900&1105&0&994&0&2262&0&0&5760\\0&96&0&224&0&936&0&0&1708&0&764&0&2872&4488&0\\0&159&0&339&0&1480&0&0&2727&0&1224&0&4488&7143&0\\40&0&500&0&720&0&2272&2844&0&2528&0&5760&0&0&14784\end{bmatrix}$

$\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&5&23&21&45&320&371&587&1053&462&216&2262&2872&7143&14784&7703&7930&19640&17474&5175\end{bmatrix}$

Event probabilities

$-$$a_2\in\mathbb{Z}$$a_2=-1$$a_2=0$$a_2=1$$a_2=2$$a_2=3$
$-$$1$$1/2$$0$$0$$0$$0$$1/2$
$a_1=0$$1/2$$1/2$$0$$0$$0$$0$$1/2$
$a_3=0$$1/2$$1/2$$0$$0$$0$$0$$1/2$
$a_1=a_3=0$$1/2$$1/2$$0$$0$$0$$0$$1/2$