Properties

Label 1.6.N.4.2b
  
Name J(A(1,2))J(A(1,2))
Weight 11
Degree 66
Real dimension 11
Components 44
Contained in USp(6)\mathrm{USp}(6)
Identity component U(1)3\mathrm{U}(1)_3
Component group C22C_2^2

Downloads

Learn more

Invariants

Weight:11
Degree:66
R\mathbb{R}-dimension:11
Components:44
Contained in:USp(6)\mathrm{USp}(6)
Rational:yes

Identity component

Name:U(1)3\mathrm{U}(1)_3
R\mathbb{R}-dimension:11
Description:{[αI30,0αˉI3]:ααˉ=1, αC}\left\{\begin{bmatrix}\alpha I_3&0,\\ 0&\bar \alpha I_3\end{bmatrix}: \alpha\bar\alpha=1,\ \alpha\in\mathbb{C}\right\} Symplectic form:[0I3I30]\begin{bmatrix} 0 & I_3\\ -I_3 & 0\end{bmatrix}
Hodge circle:udiag(u,u,u,uˉ,uˉ,uˉ)u\mapsto \mathrm{diag}(u,u, u, \bar u, \bar u, \bar u)

Component group

Name:C22C_2^2
Order:44
Abelian:yes
Generators:[ζ31000000ζ65000000ζ65000000ζ32000000ζ61000000ζ61],[000100000010000001100000010000001000]\begin{bmatrix}\zeta_{3}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{6}^{5} & 0 & 0 &0 & 0 \\0 & 0 & \zeta_{6}^{5} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{3}^{2} & 0 & 0 \\0 & 0 & 0 & 0 & \zeta_{6}^{1} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{6}^{1} \\\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\-1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 \\\end{bmatrix}

Subgroups and supergroups

Maximal subgroups:J(A(1,1))J(A(1,1))×2{}^{\times 2}, A(1,2)A(1,2)
Minimal supergroups:J(A(1,4)1)J(A(1,4)_1)×2{}^{\times 2}, Js(A(1,4)2)J_s(A(1,4)_2), J(A(1,6)1)J(A(1,6)_1), J(A(3,2))J(A(3,2)), J(A(1,4)2)J(A(1,4)_2)×2{}^{\times 2}, J(A(1,6)2)J(A(1,6)_2), J(B(3,1))J(B(3,1)), Js(A(2,2))J_s(A(2,2)), J(A(2,2))J(A(2,2))×6{}^{\times 6}, Js(A(3,2))J_s(A(3,2))

Moment sequences

xx E[x0]\mathrm{E}[x^{0}] E[x1]\mathrm{E}[x^{1}] E[x2]\mathrm{E}[x^{2}] E[x3]\mathrm{E}[x^{3}] E[x4]\mathrm{E}[x^{4}] E[x5]\mathrm{E}[x^{5}] E[x6]\mathrm{E}[x^{6}] E[x7]\mathrm{E}[x^{7}] E[x8]\mathrm{E}[x^{8}] E[x9]\mathrm{E}[x^{9}] E[x10]\mathrm{E}[x^{10}] E[x11]\mathrm{E}[x^{11}] E[x12]\mathrm{E}[x^{12}]
a1a_1 11 00 55 00 123123 00 36503650 00 114835114835 00 37201503720150 00 122763102122763102
a2a_2 11 44 3030 319319 39943994 5316953169 727395727395 1010677210106772 141909786141909786 20081933052008193305 2859275330528592753305 409122110082409122110082 58779052809435877905280943
a3a_3 11 00 4242 00 1179811798 00 38638503863850 00 13404935181340493518 00 479996954952479996954952 00 175364874474218175364874474218

Moment simplex

(E[a1e1a2e2a3e3]:iei=2) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon 44 55
(E[a1e1a2e2a3e3]:iei=4) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon 3030 1313 5454 123123
(E[a1e1a2e2a3e3]:iei=6) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon 4242 319319 167167 689689 376376 15791579 36503650
(E[a1e1a2e2a3e3]:iei=8) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon 517517 39943994 21602160 11871187 91139113 49834983 2114221142 1153511535 4920549205 114835114835
(E[a1e1a2e2a3e3]:iei=10) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon 68146814 5316953169 37203720 2891828918 1577915779 123567123567 6731067310 3670636706 288684288684 157105157105 675786675786 367388367388 15844711584471 37201503720150
(E[a1e1a2e2a3e3]:iei=12) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon 1179811798 9211192111 727395727395 5019850198 395241395241 215017215017 17036761703676 117022117022 925467925467 503000503000 39989313998931 21705932170593 11788421178842 93986319398631
50979185097918 2211386122113861 1198684211986842 5208117652081176 122763102122763102

Moment matrix

E[χiχj]=[103010513060140040050803600640280961590302302308210908101950050008021076001320560224339010230450117137013802900072003607603200057602560936148005082011703714380388090000227213010901370438587048701105002844064013205760010530472017082727060810138038848704620994002528028056025600472021607641224014019502900900110509940226200576009602240936001708076402872448800159033901480002727012240448871430400500072002272284402528057600014784]\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&3&0&1&0&5&13&0&6&0&14&0&0&40\\0&5&0&8&0&36&0&0&64&0&28&0&96&159&0\\3&0&23&0&23&0&82&109&0&81&0&195&0&0&500\\0&8&0&21&0&76&0&0&132&0&56&0&224&339&0\\1&0&23&0&45&0&117&137&0&138&0&290&0&0&720\\0&36&0&76&0&320&0&0&576&0&256&0&936&1480&0\\5&0&82&0&117&0&371&438&0&388&0&900&0&0&2272\\13&0&109&0&137&0&438&587&0&487&0&1105&0&0&2844\\0&64&0&132&0&576&0&0&1053&0&472&0&1708&2727&0\\6&0&81&0&138&0&388&487&0&462&0&994&0&0&2528\\0&28&0&56&0&256&0&0&472&0&216&0&764&1224&0\\14&0&195&0&290&0&900&1105&0&994&0&2262&0&0&5760\\0&96&0&224&0&936&0&0&1708&0&764&0&2872&4488&0\\0&159&0&339&0&1480&0&0&2727&0&1224&0&4488&7143&0\\40&0&500&0&720&0&2272&2844&0&2528&0&5760&0&0&14784\end{bmatrix}

   E[χi2]=[152321453203715871053462216226228727143147847703793019640174745175]\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&5&23&21&45&320&371&587&1053&462&216&2262&2872&7143&14784&7703&7930&19640&17474&5175\end{bmatrix}

Event probabilities

-a2Za_2\in\mathbb{Z}a2=1a_2=-1a2=0a_2=0a2=1a_2=1a2=2a_2=2a2=3a_2=3
-111/21/2000000001/21/2
a1=0a_1=01/21/21/21/2000000001/21/2
a3=0a_3=01/21/21/21/2000000001/21/2
a1=a3=0a_1=a_3=01/21/21/21/2000000001/21/2