Name: | $D_4$ |
Order: | $8$ |
Abelian: | no |
Generators: | $\begin{bmatrix}\zeta_{6}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{12}^{5} & 0 & 0 & 0 & 0 \\0 & 0 & \zeta_{12}^{5} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{6}^{5} & 0 & 0\\0 & 0 & 0 & 0 & \zeta_{12}^{7} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{12}^{7} \\\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\-1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 \\\end{bmatrix}$ |
Maximal subgroups: | $A(1,4)_1$, $J(A(1,2))$${}^{\times 2}$ |
Minimal supergroups: | $J(A(2,4))$${}^{\times 2}$, $J_s(A(2,4))$, $J(A(3,4))$, $J_s(A(3,4))$, $J(A(1,8)_2)$${}^{\times 2}$, $J_s(A(1,8)_2)$ |
$x$ |
$\mathrm{E}[x^{0}]$ |
$\mathrm{E}[x^{1}]$ |
$\mathrm{E}[x^{2}]$ |
$\mathrm{E}[x^{3}]$ |
$\mathrm{E}[x^{4}]$ |
$\mathrm{E}[x^{5}]$ |
$\mathrm{E}[x^{6}]$ |
$\mathrm{E}[x^{7}]$ |
$\mathrm{E}[x^{8}]$ |
$\mathrm{E}[x^{9}]$ |
$\mathrm{E}[x^{10}]$ |
$\mathrm{E}[x^{11}]$ |
$\mathrm{E}[x^{12}]$ |
$a_1$ |
$1$ |
$0$ |
$5$ |
$0$ |
$99$ |
$0$ |
$2450$ |
$0$ |
$68355$ |
$0$ |
$2056950$ |
$0$ |
$64990926$ |
$a_2$ |
$1$ |
$4$ |
$26$ |
$235$ |
$2586$ |
$31489$ |
$405911$ |
$5423464$ |
$74237002$ |
$1033441417$ |
$14560357821$ |
$206947415734$ |
$2960611792863$ |
$a_3$ |
$1$ |
$0$ |
$34$ |
$0$ |
$7222$ |
$0$ |
$2086690$ |
$0$ |
$689426766$ |
$0$ |
$242452083624$ |
$0$ |
$88002695271370$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon$ |
$4$ |
$5$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon$ |
$26$ |
$12$ |
$45$ |
$99$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon$ |
$34$ |
$235$ |
$126$ |
$487$ |
$276$ |
$1087$ |
$2450$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon$ |
$362$ |
$2586$ |
$1428$ |
$807$ |
$5739$ |
$3215$ |
$13042$ |
$7280$ |
$29790$ |
$68355$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon$ |
$4272$ |
$31489$ |
$2388$ |
$17404$ |
$9683$ |
$71871$ |
$39790$ |
$22090$ |
$165432$ |
$91386$ |
$382148$ |
$210644$ |
$885423$ |
$2056950$ |
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon$ |
$7222$ |
$53476$ |
$405911$ |
$29602$ |
$223068$ |
$122933$ |
$939463$ |
$67872$ |
$515807$ |
$283682$ |
$2182723$ |
$1196356$ |
$656802$ |
$5083740$ |
$$ |
$2782094$ |
$11865693$ |
$6484296$ |
$27746838$ |
$64990926$ |
$\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&3&0&1&0&4&10&0&3&0&10&0&0&24\\0&5&0&7&0&28&0&0&41&0&21&0&61&97&0\\3&0&19&0&18&0&55&73&0&46&0&123&0&0&284\\0&7&0&15&0&52&0&0&81&0&37&0&132&196&0\\1&0&18&0&35&0&78&83&0&80&0&182&0&0&400\\0&28&0&52&0&208&0&0&336&0&160&0&536&832&0\\4&0&55&0&78&0&225&256&0&218&0&518&0&0&1232\\10&0&73&0&83&0&256&345&0&260&0&619&0&0&1524\\0&41&0&81&0&336&0&0&585&0&264&0&929&1464&0\\3&0&46&0&80&0&218&260&0&252&0&532&0&0&1328\\0&21&0&37&0&160&0&0&264&0&132&0&426&672&0\\10&0&123&0&182&0&518&619&0&532&0&1262&0&0&3040\\0&61&0&132&0&536&0&0&929&0&426&0&1540&2384&0\\0&97&0&196&0&832&0&0&1464&0&672&0&2384&3763&0\\24&0&284&0&400&0&1232&1524&0&1328&0&3040&0&0&7664\end{bmatrix}$
$\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&5&19&15&35&208&225&345&585&252&132&1262&1540&3763&7664&3949&4080&9988&8860&2613\end{bmatrix}$
| $-$ | $a_2\in\mathbb{Z}$ | $a_2=-1$ | $a_2=0$ | $a_2=1$ | $a_2=2$ | $a_2=3$ |
---|
$-$ | $1$ | $1/2$ | $0$ | $0$ | $0$ | $0$ | $1/2$ |
---|
$a_1=0$ | $1/2$ | $1/2$ | $0$ | $0$ | $0$ | $0$ | $1/2$ |
---|
$a_3=0$ | $1/2$ | $1/2$ | $0$ | $0$ | $0$ | $0$ | $1/2$ |
---|
$a_1=a_3=0$ | $1/2$ | $1/2$ | $0$ | $0$ | $0$ | $0$ | $1/2$ |
---|