Properties

Label 1.6.N.8.3d
  
Name J(A(1,4)1)J(A(1,4)_1)
Weight 11
Degree 66
Real dimension 11
Components 88
Contained in USp(6)\mathrm{USp}(6)
Identity component U(1)3\mathrm{U}(1)_3
Component group D4D_4

Downloads

Learn more

Invariants

Weight:11
Degree:66
R\mathbb{R}-dimension:11
Components:88
Contained in:USp(6)\mathrm{USp}(6)
Rational:yes

Identity component

Name:U(1)3\mathrm{U}(1)_3
R\mathbb{R}-dimension:11
Description:{[αI30,0αˉI3]:ααˉ=1, αC}\left\{\begin{bmatrix}\alpha I_3&0,\\ 0&\bar \alpha I_3\end{bmatrix}: \alpha\bar\alpha=1,\ \alpha\in\mathbb{C}\right\} Symplectic form:[0I3I30]\begin{bmatrix} 0 & I_3\\ -I_3 & 0\end{bmatrix}
Hodge circle:udiag(u,u,u,uˉ,uˉ,uˉ)u\mapsto \mathrm{diag}(u,u, u, \bar u, \bar u, \bar u)

Component group

Name:D4D_4
Order:88
Abelian:no
Generators:[ζ61000000ζ125000000ζ125000000ζ65000000ζ127000000ζ127],[000100000010000001100000010000001000]\begin{bmatrix}\zeta_{6}^{1} & 0 & 0 & 0 & 0 & 0 \\0 & \zeta_{12}^{5} & 0 & 0 & 0 & 0 \\0 & 0 & \zeta_{12}^{5} & 0 & 0 & 0 \\0 & 0 & 0 & \zeta_{6}^{5} & 0 & 0\\0 & 0 & 0 & 0 & \zeta_{12}^{7} & 0 \\0 & 0 & 0 & 0 & 0 & \zeta_{12}^{7} \\\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\-1 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 \\\end{bmatrix}

Subgroups and supergroups

Maximal subgroups:A(1,4)1A(1,4)_1, J(A(1,2))J(A(1,2))×2{}^{\times 2}
Minimal supergroups:J(A(2,4))J(A(2,4))×2{}^{\times 2}, Js(A(2,4))J_s(A(2,4)), J(A(3,4))J(A(3,4)), Js(A(3,4))J_s(A(3,4)), J(A(1,8)2)J(A(1,8)_2)×2{}^{\times 2}, Js(A(1,8)2)J_s(A(1,8)_2)

Moment sequences

xx E[x0]\mathrm{E}[x^{0}] E[x1]\mathrm{E}[x^{1}] E[x2]\mathrm{E}[x^{2}] E[x3]\mathrm{E}[x^{3}] E[x4]\mathrm{E}[x^{4}] E[x5]\mathrm{E}[x^{5}] E[x6]\mathrm{E}[x^{6}] E[x7]\mathrm{E}[x^{7}] E[x8]\mathrm{E}[x^{8}] E[x9]\mathrm{E}[x^{9}] E[x10]\mathrm{E}[x^{10}] E[x11]\mathrm{E}[x^{11}] E[x12]\mathrm{E}[x^{12}]
a1a_1 11 00 55 00 9999 00 24502450 00 6835568355 00 20569502056950 00 6499092664990926
a2a_2 11 44 2626 235235 25862586 3148931489 405911405911 54234645423464 7423700274237002 10334414171033441417 1456035782114560357821 206947415734206947415734 29606117928632960611792863
a3a_3 11 00 3434 00 72227222 00 20866902086690 00 689426766689426766 00 242452083624242452083624 00 8800269527137088002695271370

Moment simplex

(E[a1e1a2e2a3e3]:iei=2) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=2\right)\colon 44 55
(E[a1e1a2e2a3e3]:iei=4) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=4\right)\colon 2626 1212 4545 9999
(E[a1e1a2e2a3e3]:iei=6) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=6\right)\colon 3434 235235 126126 487487 276276 10871087 24502450
(E[a1e1a2e2a3e3]:iei=8) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=8\right)\colon 362362 25862586 14281428 807807 57395739 32153215 1304213042 72807280 2979029790 6835568355
(E[a1e1a2e2a3e3]:iei=10) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=10\right)\colon 42724272 3148931489 23882388 1740417404 96839683 7187171871 3979039790 2209022090 165432165432 9138691386 382148382148 210644210644 885423885423 20569502056950
(E[a1e1a2e2a3e3]:iei=12) ⁣:\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}a_3^{e_3}\right]:\sum ie_i=12\right)\colon 72227222 5347653476 405911405911 2960229602 223068223068 122933122933 939463939463 6787267872 515807515807 283682283682 21827232182723 11963561196356 656802656802 50837405083740
27820942782094 1186569311865693 64842966484296 2774683827746838 6499092664990926

Moment matrix

E[χiχj]=[10301041003010002405070280041021061970301901805573046012300284070150520081037013219601018035078830800182004000280520208003360160053683204055078022525602180518001232100730830256345026006190015240410810336005850264092914640304608002182600252053200132802103701600026401320426672010012301820518619053201262003040061013205360092904260154023840097019608320014640672023843763024028404000123215240132803040007664]\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&3&0&1&0&4&10&0&3&0&10&0&0&24\\0&5&0&7&0&28&0&0&41&0&21&0&61&97&0\\3&0&19&0&18&0&55&73&0&46&0&123&0&0&284\\0&7&0&15&0&52&0&0&81&0&37&0&132&196&0\\1&0&18&0&35&0&78&83&0&80&0&182&0&0&400\\0&28&0&52&0&208&0&0&336&0&160&0&536&832&0\\4&0&55&0&78&0&225&256&0&218&0&518&0&0&1232\\10&0&73&0&83&0&256&345&0&260&0&619&0&0&1524\\0&41&0&81&0&336&0&0&585&0&264&0&929&1464&0\\3&0&46&0&80&0&218&260&0&252&0&532&0&0&1328\\0&21&0&37&0&160&0&0&264&0&132&0&426&672&0\\10&0&123&0&182&0&518&619&0&532&0&1262&0&0&3040\\0&61&0&132&0&536&0&0&929&0&426&0&1540&2384&0\\0&97&0&196&0&832&0&0&1464&0&672&0&2384&3763&0\\24&0&284&0&400&0&1232&1524&0&1328&0&3040&0&0&7664\end{bmatrix}

   E[χi2]=[15191535208225345585252132126215403763766439494080998888602613]\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&5&19&15&35&208&225&345&585&252&132&1262&1540&3763&7664&3949&4080&9988&8860&2613\end{bmatrix}

Event probabilities

-a2Za_2\in\mathbb{Z}a2=1a_2=-1a2=0a_2=0a2=1a_2=1a2=2a_2=2a2=3a_2=3
-111/21/2000000001/21/2
a1=0a_1=01/21/21/21/2000000001/21/2
a3=0a_3=01/21/21/21/2000000001/21/2
a1=a3=0a_1=a_3=01/21/21/21/2000000001/21/2