Invariants
Base field: | $\F_{5^{2}}$ |
Dimension: | $1$ |
L-polynomial: | $1 - 3 x + 25 x^{2}$ |
Frobenius angles: | $\pm0.403013315979$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-91}) \) |
Galois group: | $C_2$ |
Jacobians: | $2$ |
Isomorphism classes: | 2 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $23$ | $667$ | $15824$ | $390195$ | $9759383$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $23$ | $667$ | $15824$ | $390195$ | $9759383$ | $244132672$ | $6103647839$ | $152588486115$ | $3814695746768$ | $95367412196827$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{2}}$.
Endomorphism algebra over $\F_{5^{2}}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-91}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.25.d | $2$ | 1.625.bp |