Properties

Label 1.27.aj
Base field F33\F_{3^{3}}
Dimension 11
pp-rank 00
Ordinary no
Supersingular yes
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  F33\F_{3^{3}}
Dimension:  11
L-polynomial:  19x+27x21 - 9 x + 27 x^{2}
Frobenius angles:  ±0.166666666667\pm0.166666666667
Angle rank:  00 (numerical)
Number field:  Q(3)\Q(\sqrt{-3})
Galois group:  C2C_2
Jacobians:  11

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

pp-rank:  00
Slopes:  [1/2,1/2][1/2, 1/2]

Point counts

Point counts of the abelian variety

rr 11 22 33 44 55
A(Fqr)A(\F_{q^r}) 1919 703703 1968419684 532171532171 1435546914355469

Point counts of the curve

rr 11 22 33 44 55 66 77 88 99 1010
C(Fqr)C(\F_{q^r}) 1919 703703 1968419684 532171532171 1435546914355469 387459856387459856 1046053035110460530351 282430067923282430067923 76255974849887625597484988 205891117745743205891117745743

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over F318\F_{3^{18}}.

Endomorphism algebra over F33\F_{3^{3}}
The endomorphism algebra of this simple isogeny class is Q(3)\Q(\sqrt{-3}) .
Endomorphism algebra over F33\overline{\F}_{3^{3}}
The base change of AA to F318\F_{3^{18}} is the simple isogeny class 1.387420489.cggc and its endomorphism algebra is the quaternion algebra over Q\Q ramified at 33 and \infty.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.27.j221.729.abb
1.27.a33(not in LMFDB)
1.27.j33(not in LMFDB)