Properties

Label 1.27.aj
Base field $\F_{3^{3}}$
Dimension $1$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{3}}$
Dimension:  $1$
L-polynomial:  $1 - 9 x + 27 x^{2}$
Frobenius angles:  $\pm0.166666666667$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  $1$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $19$ $703$ $19684$ $532171$ $14355469$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $19$ $703$ $19684$ $532171$ $14355469$ $387459856$ $10460530351$ $282430067923$ $7625597484988$ $205891117745743$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{18}}$.

Endomorphism algebra over $\F_{3^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
Endomorphism algebra over $\overline{\F}_{3^{3}}$
The base change of $A$ to $\F_{3^{18}}$ is the simple isogeny class 1.387420489.cggc and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $3$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.27.j$2$1.729.abb
1.27.a$3$(not in LMFDB)
1.27.j$3$(not in LMFDB)